Оптические линии. Оптоволокно и волоконно-оптические линии связи


Волоконно-оптические ли нии связи (ВОЛС) – система в основе которой лежит оптоволоконный кабель, предназначена для передачи информации в оптическом (световом) диапазоне. В соответствии с ГОСТом 26599-85 термин ВОЛС заменен на ВОЛП (волоко́нно-опти́ческая ли́ния переда́чи), но в повседневном практическом обиходе по прежнему применяется термин ВОЛС, поэтому в данной статье мы будем придерживаться именно его.

Линии связи ВОЛС (если они корректно проведены) по сравнению со всеми кабельными системами отличаются очень высокой надежностью, отличным качеством связи, широкой пропускной способностью, значительно большей протяженностью без усиления и практически 100% защищенностью от электромагнитных помех. В основе системы лежит технология волоконной оптики – в качестве носителя информации используется свет, тип передаваемой информации (аналоговый или цифровой) не имеет значения. В работе преимущественно используется инфракрасный свет, средой передачи служит стекловолокно.

Область применения ВОЛС

Оптоволоконный кабель применяется для обеспечения связи и передачи информации уже более 40 лет, но из за высокой стоимости широко использоваться стал сравнительно недавно. Развитие технологий позволило сделать производство экономичней и стоимость кабеля доступней, а его технические характеристики и преимущества перед другими материалами быстро окупают все понесенные расходы.

В настоящее время, когда на одном объекте используется сразу комплекс слаботочных систем (компьютерная сеть, СКУД, видеонаблюдение, охранная и пожарная сигнализации, охрана периметра, телевидение и др.), обойтись без применения ВОЛС не возможно. Только использование оптоволоконного кабеля делает возможным одновременное применение всех этих систем, обеспечивает корректную стабильную работу и выполнение их функций.

ВОЛС все чаще применяется как основополагающая система при разработке и монтаже , в особенности для многоэтажных зданий, зданий большой протяженности и при объединении группы объектов. Только Волоконно-оптические кабели могут обеспечить соответствующий объем и скорость передачи информации. На основе оптоволокна могут быть реализованы все три подсистемы , в подсистеме внутренних магистралей оптические кабели применяются одинаково часто с кабелями из витых пар, а в подсистеме внешних магистралей они играют доминирующую роль. Различают оптоволоконный кабель для внешней (outdoor cables) и внутренней (indoor cables) прокладки, а так же соединительные шнуры для коммуникаций горизонтальной разводки, оснащения отдельных рабочих мест, объединения зданий.

Не смотря на относительно высокую стоимость, применение оптоволокна становится все более оправдано и находит все более широкое применение.

Преимущества волоконно-оптических линий связи (ВОЛС ) перед традиционными «металлическими» средствами передачи:

  • Широкая полоса пропускания;
  • Незначительное ослабление сигнала, например применительно к сигналу 10МГц оно составит 1,5 дБ/км по сравнению с 30дБ/км для коаксиального кабеля RG6;
  • Исключена возможность возникновения «земляных петель», так как оптоволокно является диэлектриком и создает электрическую (гальваническую) изоляцию между передающим и принимающим концом линии;
  • Высокая надёжность оптической среды: оптические волокна не окисляются, не намокают, не подвержены электромагнитному воздействию
  • Не вызывает помех в соседних кабелях или в других оптоволоконных кабелях, так как носителем сигнала является свет и он полностью остается внутри оптоволоконного кабеля;
  • Стекловолокно абсолютно не чувствительно к внешним сигналам и электромагнитным помехам (ЭМП), не имеет значения рядом с каким блоком питания проходит кабель (110 В, 240 В, 10 000 В переменного тока) или совсем рядом от мегаватного передатчика. Удар молнии на расстоянии 1 см. от кабеля не даст ни каких наводок и не отразится на работе системы;
  • Информационная безопасность - информация по оптическому волокну передаётся «из точки в точку» и подслушать или изменить ее можно только путем физического вмешательства в линию передачи
  • Оптоволоконный кабель легче и миниатюрней – его удобней и проще укладывать чем электрический кабель такого же диаметра;
  • Сделать ответвление кабеля без повреждения качества сигнала не возможно. Любое вмешательство в систему сразу обнаруживается на принимающем конце линии, это особенно важно для систем обеспечения безопасности и видеонаблюдения;
  • Пожаро- и взрывобезопасность при изменении физических и химических параметров
  • Стоимость кабеля снижается с каждым днем, его качество и возможности начинают превалировать над затратами на построение слаботочных на базе ВОЛС

Идеальных и безупречных решений не существует, как и любая система, ВОЛС имеет свои недостатки:

  • Хрупкость стекловолокна – при сильном изгибании кабеля возможна поломка волокон или их замутнение из-за возникновения микротрещин. Для устранения и минимизации этих рисков применяются усиливающие кабель конструкции и оплетки. При монтаже кабеля необходимо соблюдать рекомендации производителя (где, в частности, нормируется минимально допустимый радиус изгиба);
  • Сложность соединения в случае разрыва – требуется специальный инструмент и квалификация исполнителя;
  • Сложная технология изготовления, как самого волокна, так и компонентов ВОЛС;
  • Сложность преобразования сигнала (в интерфейсном оборудовании);
  • Относительная дороговизна оптического оконечного оборудования. Однако, оборудование является дорогим в абсолютных цифрах. Соотношение цены и пропускной способности для ВОЛС лучше, чем для других систем;
  • Замутнение волокна вследствие радиационного облучения (однако, существуют легированные волокна с высокой радиационной стойкостью).

Монтаж систем ВОЛС требует от исполнителя соответствующего уровня квалификации, так как концевая заделка кабеля производится специальными инструментами, с особой точностью и мастерством в отличии от других средств передачи. Настройки маршрутизации и переключения сигналов требуют специальной квалификации и мастерства, поэтому в этой области не стоит экономить и бояться переплатить профессионалам, устранение нарушений в работе системы и последствий не правильного монтажа кабеля обойдется дороже.

Принцип действия оптоволоконного кабеля.

Сама идея передачи информации при помощи света, не говоря уже о физическом принципе работы большинству обывателей не совсем понятно. Мы не будем глубоко вдаваться в эту тему, но постараемся объяснить основной механизм действия оптоволокна и обосновать такие высокие показатели его работы.

Концепция волоконной оптики опирается на фундаментальные законы отражения и преломления света. Благодаря своей конструкции стекловолокно может удерживать световые лучи внутри световода и не дает им «пройти сквозь стены» при передачи сигнала на многие километры. Кроме того не секрет, что скорость света выше.

Волоконная оптика основывается на эффекте преломления при максимальном угле падения, когда имеет место полное отражение. Это явление происходит в том случае, когда луч света выходит из плотной среды и попадает в менее плотную среду под определенным углом. Например, представим себе абсолютно не подвижную гладь воды. Наблюдатель смотрит из под воды и меняет угол обзора. В определенный момент угол обзора становится таким, что наблюдатель не сможет видеть объекты, находящиеся над поверхностью воды. Этот угол называется углом полного отражения. При этом угле наблюдатель будет видеть только объекты, находящиеся под водой, будет казаться, что смотришь в зеркало.

Внутренняя жила кабеля ВОЛС имеет более высокий показатель преломления, чем оболочка и возникает эффект полного отражения. По этой причине луч света, проходя по внутренней жиле, не может выйти за ее пределы.

Существует несколько типов оптоволоконных кабелей:

  • Со ступенчатым профилем – типичный, самый дешевый вариант, распределение света идет «ступеньками» при этом происходит деформация входного импульса, вызванная различной длиной траекторий световых лучей
  • С плавным профилем «многомодовое» – лучи света распространяются с примерно равной скоростью «волнами», длина их путей уравновешена, это позволяет улучшить характеристики импульса;
  • Одномодовое стекловолокно – самый дорогой вариант, позволяет вытянуть лучи в прямую, характеристики передачи импульса становятся практически безупречными.

Оптоволоконный кабель до сих пор стоит дороже чем другие материалы, его монтаж и заделка сложнее, требуют квалифицированных исполнителей, но будущее передачи информации несомненно за развитием именно этих технологий и этот процесс необратим.

В состав ВОЛС входят активные и пассивные компоненты. На передающем конце оптоволоконного кабеля находится светодиод или лазерный диод, их излучение модулировано передающим сигналом. Применительно к видеонаблюдению это будет видеосигнал, для передачи цифровых сигналов логика сохраняется. При передаче инфракрасный диод модулирован по яркости и пульсирует в соответствии с вариациями сигнала. Для принятия и преобразования оптического сигнала в электрический, на принимающем конце, как правило находится фотодетектор.


К активным компонентам относятся мультиплексоры, регенераторы, усилители, лазеры, фотодиоды и модуляторы.

Мультиплексор – объединяет несколько сигналов в один, таким образом для одновременной передачи нескольких сигналов реального времени можно использовать один оптоволоконный кабель. Эти устройства незаменимы в системах с недостаточным или ограниченным числом кабелей.

Существует несколько типов мультиплексоров, они различаются по своим техническим характеристикам, функциям и области применения:

  • спектрального разделения (WDM) – самые простые и дешевые устройства, передает по одному кабелю оптические сигналы от одного или нескольких источников, работающих на различных длинах волн;
  • частотного-модулирования и частотного мультиплексирования (FM-FDM) – устройства достаточно невосприимчивые к шуму и искажениям, с хорошими характеристиками и схемами средней степени сложности, имеют 4,8 и 16 каналов, оптимальны для видеонаблюдения.
  • Амплитудной модуляции с частично подавленной боковой полосой (AVSB-FDM) – с качественной оптоэлектроникой позволяют передавать до 80 каналов, оптимальны для абонентского телевидения, но дороговаты для видеонаблюдения;
  • Импульсно-кодовой модуляции (PCM – FDM)– дорогостоящее устройство, полностью цифровое применяется для распространения цифрового видео и и видеонаблюдения;

На практике часто применяются комбинации этих методов. Регенератор - устройство, осуществляющее восстановление формы оптического импульса, который, распространяясь по волокну, претерпевает искажения. Регенераторы могут быть как чисто оптическими, так и электрическими, которые преобразуют оптический сигнал в электрический, восстанавливают его, а затем снова преобразуют в оптический.

Усилитель -усиливает мощность сигнала до требуемого уровня напряжения тока, может быть оптическим и электрическим, осуществляет оптико-электронное и электронно-оптическое преобразование сигнала.

Светодиоды и Лазеры - источник монохромного когерентного оптического излучения (света для кабеля). Для систем с прямой модуляцией, одновременно выполняет функции модулятора, преобразующего электрический сигнал в оптический.

Фотоприёмник (Фотодиод) - устройство, принимающее сигнал на другом конце оптоволоконного кабеля и осуществляющее оптоэлектронное преобразование сигнала.

Модулятор - устройство, модулирующее оптическую волну, несущую информацию по закону электрического сигнала. В большинстве систем эту функцию выполняет лазер, однако в системах с непрямой модуляцией для этого используются отдельные устройства.

К пассивным компонентам ВОЛС относятся:

Оптоволоконный кабель выполняет функции среды для передачи сигнала. Наружная оболочка кабеля может быть изготовлена из различных материалов: поливинилхлорида, полиэтилена, полипропилена, тефлона и других материалов. Оптический кабель может иметь бронирование различного типа и специфические защитные слои (например, мелкие стеклянные иглы для защиты от грызунов). По конструкции может быть:


Оптическая муфта - устройство, используемое для соединения двух и более оптических кабелей.

Оптический кросс - устройство, предназначенное для оконечивания оптического кабеля и подключения к нему активного оборудования.

Спайки – предназначены для постоянного или полупостоянного сращивания волокон;

Разъемы – для повторного присоединения или отключения кабеля;

Ответвители – устройства, распределяющием оптическую мощность нескольких волокон в одно;

Коммутаторы – устройства, перераспределяющие оптические сигналы под ручным или электронным контролем

Монтаж волоконно-оптических линий связи, его особенности и порядок.

Стекловолокно очень прочный, но хрупкий материал, хотя благодаря защитной оболочке, с ним можно обращаться практически как с электрическим. Однако при монтаже кабеля следует соблюдать требования производителей по:

  • «Максимальному растяжению» и «максимальному разрывному усилию», выраженному в ньютонах (около 1000 Н или 1кН). В оптическом кабеле основное напряжение приходится на силовую конструкцию (укрепленный пластик, сталь, кевлар или их комбинация). Каждый тип конструкции имеет свои индивидуальные показатели и степень защиты, если натяжение превышает предусмотренный уровень, то оптоволокно может быть повреждено.
  • «Минимальному радиусу изгиба» – делать изгибы более плавными, избегать резких сгибов.
  • «Механической прочности», она выражается в Н/м (ньютоны/метры) – защита кабеля от физических нагрузок (на него можно наступить или даже наехать транспортом. Следует быть предельно осторожными и особо обезопасить места пересечения и соединения, нагрузка сильно увеличивается из-за малой зоны контакта.

Оптический кабель обычно поставляется намотанным на деревянные барабаны с прочным пластиковым защитным слоем или деревянными планками по окружности. Внешние слои кабеля наиболее уязвимы, поэтому при монтаже необходимо помнить о весе барабана, беречь его от ударов, падений, предпринимать меры безопасности при складировании. Лучше всего хранить барабаны горизонтально, если же они все-таки лежат вертикально, то их края (ободы) должны соприкасаться.

Порядок и особенности монтажа оптоволоконного кабеля:

  1. До начала монтажа необходимо осмотреть барабаны с кабелем на предмет повреждений, вмятин, царапин. При любом подозрении кабель лучше сразу отложить в сторону для последующего детального изучения или отбраковки. Короткие куски (меньше 2 км.) на непрерывность волокна можно проверить на просвет любым фонариком. Волоконный кабель для инфракрасной передаче так же хорошо передает обычный свет.
  2. Далее изучить трассу на предмет потенциальных проблем (острые углы, забитые кабельные каналы и т.д.), при их наличии внести в маршрут изменения для минимизации рисков.
  3. Распределить кабель по маршруту таким образом, чтобы точки соединения и подключения усилителей находились в доступных, но защищенных от неблагоприятных факторов местах. Важно, чтобы в местах будущих соединений оставался достаточный запас кабеля. Открытые концы кабеля должны быть защищены водонепроницаемыми колпаками. Для минимизации напряжения на изгиб и повреждений от проезжающего транспорта используются трубы. На обоих концах кабельной линии оставляют часть кабеля, его длина зависит от планируемой конфигурации).
  4. При прокладке кабеля под землей его дополнительно защищают от повреждений в локальных точках нагрузки, таких как контакт с неоднородным материалом засыпки, неровностями траншеи. Для этого кабель в траншее укладывают на слой песка 50-150 см. и сверху засыпают таким же слоем песка 50-150 см. Дно траншеи должно быть ровным, без выступов, при закапывании следует удалять камни, которые могут повредить кабель. Следует отметить, что повреждения кабеля могут возникнуть как сразу, так и в процессе эксплуатации (уже после засыпки кабеля), например от постоянного давления, не убранный камень может постепенно продавить кабель. Работы по диагностике и поиску и устранению нарушений уже закопанного кабеля обойдутся намного дороже, чем аккуратность и соблюдение мер предосторожности при монтаже. Глубина траншеи зависит от типа почвы и ожидаемой нагрузки на поверхности. В твердой породе глубина составит 30 см., в мягкой или под дорогой 1 м. Рекомендуемая глубина составляет 40-60 см., при толщине песчаной подстилки от 10 до 30 см.
  5. Чаще всего применяется укладка кабеля в траншею или в лоток прямо с барабана. При монтаже очень длинных линий, барабан помещается на транспортное средство, по мере продвижения машины кабель укладывается на свое место, при этом не стоит торопиться, темп и порядок размотки барабана регулируется вручную.
  6. При укладке кабеля в лоток самое главное не превышать критический радиус изгиба и механической нагрузки. Кабель следует укладывать в одной плоскости, не создавать точек сосредоточенных нагрузок, избегать на трассе резких углов, давления и пересечения с другими кабелями и трассами, не изгибать кабель.
  7. Протяжка оптоволоконного кабеля через кабельные каналы аналогична протяжке обычного кабеля, но не стоит прилагать излишних физических усилий и нарушать спецификации производителя. При использовании скоби хомутов помните, что нагрузка должна ложиться не на внешнюю оболочку кабеля, а на силовую конструкцию. Для уменьшения трения можно использовать тальк или гранулы из полистирола, по поводу применения других смазок необходимо консультироваться с производителем.
  8. В случаях, если кабель уже имеет концевую заделку, при монтаже кабеля следует быть особенно внимательными, что бы не повредить разъемы, не загрязнить их и не подвергать чрезмерной нагрузке в зоне соединения.
  9. После укладки кабель в лотке закрепляется нейлоновыми стяжками, он не должен сползать или провисать. Если особенности поверхности не позволяют использовать специальные кабельные крепления, допустимо применение хомутов, но с особой осторожностью, чтобы не повредить кабель. Рекомендуется применение хомутов с пластиковым защитным слоем, для каждого кабеля следует использовать отдельный хомут и ни в коем случае не стягивать вместе несколько кабелей. Между конечными точками крепления кабеля лучше оставить небольшую слабину, а не класть кабель в натяг, иначе он будет плохо реагировать на колебания температуры и вибрации.
  10. Если при монтаже оптоволокно все-таки было повреждено, пометьте участок и оставьте достаточный запас кабеля для последующего сращивания.

В принципе, прокладка оптоволоконного кабеля не сильно отличается от монтажа обычного кабеля. Если соблюдать все указанные нами рекомендации, то проблем при монтаже и эксплуатации не возникнет и Ваша система будет работать долго, качественно и надежно.

Пример типового решения по прокладке линии ВОЛС

Задача – организовать систему ВОЛС между двумя отдельно стоящими зданиями производственного корпуса и административного здания. Расстояние между зданиями 500 м.

Смета на монтаж системы ВОЛС
№п/п Наименование оборудования, материалов, работ Ед. из-я Кол-во Цена за ед. Сумма, в руб.
I. Оборудование системы ВОЛС, в том числе: 25 783
1.1. Кросс оптический настенный (ШКОН) 8 портов шт. 2 2600 5200
1.2. Медиаконвертер 10/100-Base-T / 100Base-FX, Tx/Rx: 1310/1550нм шт. 2 2655 5310
1.3. Муфта оптическая проходная шт. 3 3420 10260
1.4. Ящик коммутационный 600х400 шт. 2 2507 5013
II. Кабельные трассы и материалы системы ВОЛС, в том числе: 25 000
2.1. Оптический кабель с внешним тросом 6кН, центральный модуль, 4 волокна, одномодовый G.652. м. 200 41 8200
2.2. Оптический кабель с внутренним несущим тросом, центральный модуль, 4 волокна, одномодовый G.652. м. 300 36 10800
2.3. Прочие расходные материалы (разъемы, саморезы, дюбеля, изоляционная лента, крепления и т.п.) компл. 1 6000 6000
III. ИТОГО СТОИМОСТЬ ОБОРУДОВАНИЯ И МАТЕРИАЛОВ (п.I+п.II) 50 783
IV. Транспортно-заготовительные расходы, 10% *п.III 5078
V. Работы по монтажу и коммутации оборудования, в том числе: 111 160
5.1. Монтаж перетяжки ед. 4 8000 32000
5.2. Прокладка кабеля м. 500 75 37500
5.3. Монтаж и сварка разъемов ед. 32 880 28160
5.4. Монтаж коммутационного оборудования ед. 9 1500 13500
VI. ВСЕГО ПО СМЕТЕ (п.III+п.IV+п.V) 167 021

Пояснения и комментарии:

  1. Общая протяженность трассы 500 м., в том числе:
    • от забора до производственного корпуса и административного здания составляет по 100 м. (итого 200 м.);
    • вдоль забора между зданиями 300 м.
  2. Монтаж кабеля осуществляется открытым способом, в том числе:
    • от зданий до забора (200 м.) по воздуху (перетяжка) с применением специализированных для прокладки ВОЛС материалов;
    • между зданиями (300 м.) по забору из железобетонных плит, кабель закрепляется по середине полотна забора при помощи металлических клипс.
  3. Для организации ВОЛС используется специализированный самонесущий (встроенный трос) бронированный кабель.

ВОЛС (волоконно-оптические линии связи , оптоволокно) – оптические линии связи , состоящие из пассивных и активных элементов, передающие информацию при помощи светового излучения.

Различают 2 вида оптоволоконного кабеля:

  • одномодовый (обозначается OS1) – диаметр волокна 9/125 мкм. Для формирования сигнала, как правило, используется лазер;
  • многомодовый (обозначается OM1, OM2, OM3, в зависимости от характеристик световодов, центральных жил) – диаметр волокна 50/125 мкм или 62,5/125 мкм. Для формирования сигнала может использоваться лазер или светодиод.

Соединение оптоволоконного кабеля

На сегодняшний момент различают 2 способа соединения: склейкой и сваркой.

Склейка, или оптическая сборка – это соединение с помощью специальных разъёмов, содержащих клей-гель или эпоксидный клей. Данный метод чаще используется в труднодоступных местах или на взрывоопасных производствах, где недопустимо образование искр. Из-за сложности проводимых операций, например, полировка оптического кабеоя под UPC или APC, этот метод оказывается дороже. Для контроля качества выполненных работ используют микроскоп с увеличением в 200 крат, но практика показывает, что при таком способе соединения потери остаются достаточно высокими по сравнению со сваркой.

Сварка – это соединение с использованием специализированного сварочного аппарата, который выполняет все операции автоматически, за счет этого влияние человеческого фактора можно свести к минимуму. В аппарат подаются подготовленные специальным образом концы оптического кабеля (сколотые), которые затем соединяются при помощи электрической дуги. В процессе сварки сварочный аппарат проводит множество проверок (тип волокна, качество свариваемых краев, наличие неоднородностей в месте сварки, механическая прочность места сварки и т.д.), что в свою очередь значительно позволяет снизить расходы и время монтажа.

Тестирование сетей из оптоволокна

После проведенного монтажа все оптические линии необходимо досконально проверить. Для этих целей используется специализированное оборудование – рефлектометр, позволяющий определить следующие параметры:

  • длину и тип оптического кабеля;
  • наличие трещин и скрытых дефектов;
  • расстояние до дефектов;
  • затухание.

Также используется микроскоп с увеличением не ниже 200 крат, через который производится съемка мест сварки. Впоследствии все эти данные попадают в отчет, в котором показывается, как были выполнены работы.

Преимущества оптики перед обычными кабельными сетями

Дальность передачи данных

Дальность передачи данных в оптоволоконных сетях значительно выше, чем в линиях, построенных на основе медных кабелей (LAN).

В зависимости от типа оптоволоконного кабеля, дальность передачи данных без повторителей на скорости 10 Гбит/с возможна:

до 5 км – OS1;

до 33 метров – OM1;

до 82 метров – OM2;

до 300 метров – OM3.

Защищенность сети ВОЛС

Оптическое волокно имеет более совершенную защиту от несанкционированного доступа к информации по сравнению с сетями, передающими посредством электрических импульсов. Стороннее подключение к линии оптоволокна невозможно из-за особенности строения кабеля. При попытке считать информацию нужно разрушить целостность лакового покрытия кабеля, что неминуемо прервет передачу данных в сети и факт подключения будет очевидным.

Особенности монтажа ВОЛС по сравнению с LAN и WI-FI

Медные LAN линии могут влиять:

  • электрические сети;
  • наличие оптических коммуникаций;
  • наличия водопроводных труб и труб пожаротушения;
  • влияние погодных факторов.

На Wi-Fi сети могут влиять:

  • преграды (стены);
  • погодные условия;
  • бытовые приборы;
  • прямая видимость;
  • требования законодательства (если трансляция идет вне помещений, то необходима регистрация такого канала в надзорных органах, что приводит к значительному удорожанию канала).

Рентабельность вложения в оптоволоконные сети

Оборудование для оптоволоконных сетей стоит дороже, чем для медных линий или для точки доступа Wi-Fi. Однако при расчете пропускной способности по отношению к цене, оптика является более выгодным решением.

Учитывая все вышеперечисленные достоинства сетей нового поколения, можно с уверенностью рекомендовать ВОЛС в качестве единственно возможного варианта!

Скорость и безопасность передачи больших объемов данных значительно повысит потенциал вашего бизнеса и позволит вывести его на новый уровень.

Закажите устройство волоконно-оптических линий связи в компании « » по указанным на сайте телефонам!

Почему вам нужно заказать наладку видеонаблюдение в

Почему стоит доверить комплексную работу профессионалам «Терра Ментор»:

  • проведут предпроектное обследование;
  • разработают проект и рабочую документацию;
  • произведут монтаж и пусконаладочные работы пассивных и активных элементов ВОЛС.

В настоящее время в качестве оптических линий связи используют:

  • а) оптические линии с использованием волоконно-оптического кабеля - волоконно-оптические линии связи (ВОЛС);
  • б) оптические линии связи без использования волоконно-оптического кабеля.

Наилучшие показатели по скорости передачи данных, по помехозащищенности, по защищенности от несанкционированного доступа имеют волоконно-оптические линии связи.

Волоконно-оптические линии связи (ВОЛС)

Структурная схема волоконно-оптической линии связи приведена на рис. 7.11.

Рис. 7.11.

Электрический сигнал поступает на передатчик - трансивер, который преобразует электрический сигнал в световой импульс. Последний через оптический соединитель подается в оптический кабель. В месте приема оптический кабель с помощью оптического соединителя подключатся к приемнику - трансиверу, преобразующему пучок света в электрический сигнал.

В зависимости от назначения ВОЛС, ее протяженности, качества используемых комплектующих структурная схема может изменяться. При значительных расстояниях между пунктами передачи и приема вводится ретранслятор - усилитель сигналов. При малой длине оптического кабеля (если хватает строительной длины оптического кабеля) сварка кабеля не нужна. Под строительной длиной понимают длину цельного куска кабеля, поставляемого заводом-изготовигелем.

Волоконно-оптические линии связи имеют следующие достоинства:

  • 1. Высокую помехозащищенность от внешних электромагнитных помех и от межканальных взаимонаводок.
  • 2. Широкий диапазон рабочих частот позволяет по такой линии связи передавать информацию со скоростью 10 |2 бит/с = Тбит/с.
  • 3. Защищенность от несанкционированного доступа: излучения в окружающее пространство ВОЛС почти не дает, а изготовление отводов оптической энергии без разрушения кабеля практически невозможно. А всякие воздействия на волокно могут быть зарегистрированы с помощью мониторинга (непрерывного контроля) целостности линии.
  • 4. Возможность скрытой передачи информации.
  • 5. Потенциально низкую стоимость, обусловленную заменой дорогостоящих цветных металлов (медь) материалами с неограниченными сырьевыми ресурсами (двуокись кремния).
  • 6. Автоматически обеспечивается гальваническая развязка сегментов линии.

Однако в оптоволоконной технологии имеются и свои недостатки:

  • 1. Высокая стоимость аппаратуры.
  • 2. Требуется дорогое технологическое оборудование, как в процессе монтажа, так и в процессе эксплуатации. При обрыве оптического кабеля затраты на его восстановление значительно выше, чем на восстановление медного кабеля.
  • 3. Оптические кабели нестойки к воздействию радиации.

Основу ВОЛС составляют оптические кабели, изготавливаемые из

отдельных световодов - оптических волокон.

Оптическое волокно представляет собой тонкую двухслойную нить, состоящую из сердечника и оболочки с различными показателями преломления. Для защиты волокна от атмосферных и механических воздействий поверх светоотражающей оболочки накладывается защитное покрытие. Конструкция оптического волокна с защитным покрытием представлена на рис.7.12.

Рис. 7.12.

Используются 3 типа оптических волокон: полимерные оптические волокна (POF = Plastic Optical Fiber), кварц-полимерные оптические волокна (PCF = Polymer Cladded Fiber), кварцевые оптические волокна (GOF = Glass Optical Fiber).

Полимерные оптические волокна изготавливаются из полимерных материалов, имеющих высокие оптические свойства. Волоконно- оптические кабели из полимерного оптического волокна характеризуются хорошей гибкостью (при диаметре волокна 1,5 мм допустимый радиус изгиба волокон равен 8 мм) и обеспечивают пропускную способность до 2,5 Гбит/с, что существенно выше, чем у витой пары (max 1 Гбит/с). Дальность передачи данных - до 80 м.

POF используется в настоящее время достаточно широко. Его используют для систем декоративного, архитектурного и ландшафтного освещения, для подсветки бассейнов, для безопасного освещения взрывоопасных помещений. Еще одной областью применения можно считать использование POF для изготовления систем визуальной индикации информационных панелей бытовой, автомобильной, промышленной и медицинской электроники. ПОВ применяют для создания высокоскоростных недорогих, свободных от электромагнитных помех линий передачи данных на небольшие расстояния (системы автоматизации технологических процессов, передача сигналов от видеокамер, оптических датчиков; локальные вычислительные сети). Например, ПОВ-кабели используются в промышленном стандарте PROFIBUS. На рис.7.13 приведен внешний вид такого кабеля с установленным соединителем.

Кварц-полимерные оптические волокна изготавливаются с кварцевым сердечником и полимерной светоотражающей оболочкой и предназначены для систем внутри- и межобъектовой связи. Дальность передачи данных до 400 м, радиус многократных изгибов кабеля - не менее

75 мм. PCF-кабсли поставляются заранее разделанными с установленными соединителями. Внешний вид одного из таких кабелей приведен на рис. 7.13.


Рис. 7.13.

Кварцевые оптические волокна изготавливаются из высокочистого кварцевого стекла (сердечник и светоотражающая оболочка) и применяются гам, где большие объемы данных необходимо передавать на высоких скоростях и на большие расстояния - до нескольких километров (систем дальней, внутри- и межобъектовой связи: локальных компьютерных сетях LAN (Local Area Networks), сетях MAN (Metropolitan Area Networks), сетях WAN (Wide Area Networks)).

Передача оптической энергии по оптическому волокну обеспечивается с помощью эффекта полного внутреннего отражения. Кварцевое оптическое волокно представляет собой двухслойный цилиндрический световод (рис. 7.14).


Рис. 7.

в оптоволокне

Материал внутренней жилы имеет показатель преломления п и а материал внешнего слоя - п 2 , при этом п > п 2 , т. е. материал внутренней жилы оптически более плотный, чем материал оболочки. Для излучения, входящего в цилиндр под малыми углами по отношению к оси цилиндра, выполняется условие полного внутреннего отражения: при падении излучения на границу с оболочкой вся энергия излучения отражается внутрь жилы световода. То же самое происходит и при всех последующих отражениях; в результате излучение распространяется вдоль оси световода, не выходя через оболочку. Максимальный угол отклонения от оси, при котором еще имеется полное внутреннее отражение, определяется выражением

Величина А 0 называется числовой апертурой световода и учитывается при согласовании световода с излучателем. Излучение, падающее на торец под углами у >уо (внеапертурные лучи), при взаимодействии с оболочкой не только отражается, но и преломляется; часть оптической энергии уходит из световода. В конечном итоге после многократных встреч с границей жила-оболочка такое излучение полностью рассеивается из световода.

Оптоволокно характеризуется двумя важнейшими параметрами: дисперсией и затуханием.

Дисперсия, т. е. зависимость скорости распространения сигнала от длины волны излучения, - важнейший параметр оптического волокна. Поскольку при передаче информации светодиод или лазер излучает некоторый спектр длин волн, дисперсия приводит к уширению импульсов при распространении по волокну и тем самым порождает искажения сигналов. При оценке дисперсии пользуются термином «полоса пропускания» - величина, обратная величине уширения импульса при прохождении им по оптическому волокну расстояния в 1 км. Измеряется полоса пропускания в мегагерцах на километр (МГц км). Дисперсия накладывает ограничения на дальность передачи и верхнее значение частоты передаваемых сигналов.

Затухание определяется потерями на поглощение и рассеяние излучения в оптоволокне. Потери на поглощение зависят от чистоты материала, а потери на рассеяние - от неоднородности его показателей преломления. Зависит затухание и от длины волны излучения, вводимого в оптоволокно.

Количественно затухание определяется по формуле

где Р вх - мощность входного оптического сигнала; Р еих - мощность выходного оптического сигнала; / - длина световода.

Единицей измерении затухания служит децибелл на километр (дБ/км).

Величины затухания и дисперсии различаются для разных типов кварцевых оптических волокон.

В зависимости от диаметра и профиля показателя преломления в направлении от центра к периферии в поперечном сечении световода они делятся на многомодовые со ступенчатым профилем показателя преломления, одномодовые волокна, многомодовые волокна с градиентным изменением показателя преломления. На рис. 7.15 приведены пути распространения света в различных типах оптоволокна.


Рис. 7.15.

Волокно на (рис.7.15, а) называется волокном со ступенчатым профилем показателя преломления и многомодовым, поскольку для распространения луча света существует много возможных путей, или мод. Это множество мод приводит к дисперсии (уширению) импульса, поскольку каждая мода проходит в волокне различный путь, а поэтому разные моды имеют разную задержку передачи, проходя от одного конца волокна до другого. Результат этого явления - ограничение максимальной частоты, которую можно эффективно передавать при данной длине волокна. Увеличение или частоты, или длины волокна сверх предельных значений, по существу, приводит к слиянию следующих друг за другом импульсов, из-за чего их становится невозможно различить. Для типового многомодового волокна этот предел равен примерно 15 МГц км. Это означает, что видеосигнал с полосой, например, 5 МГц может быть передан на максимальное расстояние в 3 км (5 МГц? 3 км = 15 МГц км). Попытка передать сигнал набольшее расстояние приведет к прогрессирующей потере высоких частот. В многомодовом волокне диаметр световой жилы составляет 50; 62,5; 85; 140 мкм.

Одномодовые волокна (рис.7.15, Ь) весьма эффективно снижают дисперсию, и результирующая полоса - во много ГГц км - делает их идеальными для протяженных линий связи. По одномодовым световодам в идеальном случае распространяется только одна волна. Они обладают значительно меньшим коэффициентом затухания (в зависимости от длины волны в 2...4 и даже в 7... 10 раз) по сравнению с многомодовыми и наибольшей пропускной способностью, т. к. в них почти не искажается сигнал. Но для этого диаметр сердцевины световода должен быть соизмерим с длиной волны. Практически диаметр равен 8... 10 мкм. К сожалению, волокно столь малого диаметра требует применения мощного, прецизионно совмещенного, а поэтому сравнительно дорогостоящего излучателя на лазерном диоде, что снижает их привлекательность для многих применений.

В идеале требуется волокно с полосой пропускания того же порядка, что и одномодового волокна, но с диаметром, как у многомодового, чтобы было возможно применение недорогих передатчиков на светодиодах. До некоторой степени этим требованиям удовлетворяет многомодовое волокно с градиентным изменением показателя преломления (рис. 7.15, с). Оно напоминает многомодовое волокно со ступенчатым изменением показателя преломления, о котором говорилось выше, но показатель преломления его сердцевины неоднороден - он плавно изменяется от максимального значения в центре до меньших значений на периферии. Это приводит к двум следствиям. Первое - свет распространяется по слегка изгибающемуся пути, и второе, и более важное, различия в задержке распространения разных мод минимальны. Это связано с тем, что высокие моды, входящие в волокно под большим углом и проходящие больший путь, на самом деле начинают распространяться с большей скоростью по мерс того, как они удаляются от центра в зону, где показатель преломления снижается, и в основном движутся быстрее, чем моды низших порядков, остающиеся вблизи оси волокна, в области высокого показателя преломления. Увеличение скорости как раз компенсирует больший проходимый путь.

Градиентные многомодовые световоды предпочтительнее, т. к. в них, во-первых, распространяется меньше мод и, во-вторых, меньше различаются их углы падения и отражения, а следовательно, благоприятнее условия передачи.

Хотя многомодовые волокна с градиентным показателем преломления не являются идеальными, но тем не менее они демонстрируют весьма неплохие значения полосы. Поэтому в большинстве систем малой и средней протяженности выбор такого типа волокон оказывается предпочтительным.

Оптический сигнал затухает во всех волокнах со скоростью, зависящей от длины волны передатчика источника света. Существует три длины волны, на которых затухание оптического волокна обычно минимально, - 850, 1310 и 1550 нм. Они известны как окна прозрачности. Для многомодовых систем окно на длине волны в 850 нм - первое и наиболее часто используемое (наименьшая цена оптоволоконной линии связи). На этой длине волны градиентное многомодовое волокно хорошего качества показывает затухание порядка 3 дБ/км, что делает возможной реализацию связи на расстояниях свыше 3 км.

На длине волны 1310 нм то же самое волокно показывает еще меньшее затухание - 0,7 дБ/км, позволяя тем самым пропорционально увеличить дальность связи примерно до 12 км; 1310 нм - это также первое рабочее окно для одномодовых оптоволоконных систем, затухание при этом составляет около 0,4 дБ/км, что в сочетании с передатчиками на лазерных диодах позволяет создавать линии связи длиной свыше 50 км. Второе окно прозрачности - 1550 нм - используется для создания еще более длинных линий связи (затухание волокна - менее 0,24 дБ/км).

Значения затухания в различных окнах прозрачности в многомодовых и одномодовых световодах приведены в табл. 7.3.

Таблица 7.3

Значения затухания в многомодовых и одномодовых световодах

Для связи приемника и передатчика используется волоконно- оптический кабель (ВОК), в котором оптические волокна дополняются элементами, повышающими эластичность и прочность кабеля, защиту кабеля от внешних факторов. Различают кабели для внутренней прокладки, кабель для использования вне помещений (кабели, которые могут закапываться в грунт; кабели, которые прокладываются в специальных канализациях; кабели, которые подвешиваются на открытом пространстве), кабели для подводных протяженных линий связи.

Почти вес европейские производители наносят на оптоволоконный кабель маркировку, соответствующую системе стандарта DIN VDE 0888. По этому стандарту каждому типу кабеля ставится в соответствие последовательность букв и цифр, в которых заключены все характеристики волоконно-оптических кабелей. Отечественные производители используют свою классификацию и свою систему обозначений.

Временный выход из строя оптического кабеля или отсутствие возможности прокладки кабеля, необходимость высокой защищенности от электромагнитных помех и перехвата привело к созданию беска- бельных оптических линий связи с различной дальностью связи.

Оптические линии связи без использования волоконно-оптического кабеля разделяют на оптические линии с большой дальностью связи и локальные беспроводные оптические линии.

Идеология бескабельной оптики основана на том, что оптический канал заменяет кабель.

Самой высокой пропускной способностью среди всех существующих средств связи обладает оптическое волокно (диэлектрические волноводы). Волоконно-оптические кабели применяются для создания - волоконно-оптических линий связи, способных обеспечить самую высокую скорость передачи информации (в зависимости от типа используемого активного оборудования скорость передачи может составлять десятки гигабайт и даже терабайт в секунду).

Кварцевое стекло, являющееся несущей средой ВОЛС, помимо уникальных пропускных характеристик, обладает ещё одним ценным свойством - малыми потерями и нечувствительностью к электромагнитным полям. Это выгодно отличает его от обычных медных кабельных систем.

Данная система передачи информации, как правило, используется при постройке рабочих объектов в качестве внешних магистралей, объединяющих разрозненные сооружения или корпуса, а также многоэтажные здания. Она может использоваться и в качестве внутреннего носителя структурированной кабельной системы (СКС), однако законченные СКС полностью из волокна встречаются реже - в силу высокой стоимости строительства оптических линий связи.

Применение ВОЛС позволяет локально объединить рабочие места, обеспечить высокую скорость загрузки Интернета одновременно на всех машинах, качественную телефонную связь и телевизионный приём.

При грамотном проектировании будущей системы (этот этап подразумевает решение архитектурных вопросов, а также выбор подходящего оборудования и способов соединения несущих кабелей) и профессиональном монтаже применение волоконно-оптических линий обеспечивает ряд существенных преимуществ:

  • Высокую пропускную способность за счёт высокой несущей частоты. Потенциальная возможность одного оптического волокна - несколько терабит информации за 1 секунду.
  • Волоконно-оптический кабель отличается низким уровнем шума, что положительно сказывается на его пропускной способности и возможности передавать сигналы различной модуляции.
  • Пожарная безопасность (пожароустойчивость). В отличие от других систем связи, ВОЛС может использоваться безо всяких ограничений на предприятиях повышенной опасности, в частности на нефтехимических производствах, благодаря отсутствию искрообразования.
  • Благодаря малому затуханию светового сигнала оптические системы могут объединять рабочие участки на значительных расстояниях (более 100 км) без использования дополнительных ретрансляторов (усилителей).

  • Информационная безопасность. Волоконно-оптическая связь обеспечивает надёжную защиту от несанкционированного доступа и перехвата конфиденциальной информации. Такая способность оптики объясняется отсутствием излучений в радиодиапазоне, а также высокой чувствительностью к колебаниям. В случае попыток прослушки встроенная система контроля может отключить канал и предупредить о подозреваемом взломе. Именно поэтому ВОЛС активно используют современные банки, научные центры, правоохранительные организации и прочие структуры, работающие с секретной информацией.
  • Высокая надёжность и помехоустойчивость системы. Волокно, будучи диэлектрическим проводником, не чувствительно к электромагнитным излучениям, не боится окисления и влаги.
  • Экономичность. Несмотря на то, что создание оптических систем в силу своей сложности дороже, чем традиционных СКС, в общем итоге их владелец получает реальную экономическую выгоду. Оптическое волокно, которое изготавливается из кварца, стоит примерно в 2 раза дешевле медного кабеля, дополнительно при строительстве обширных систем можно сэкономить на усилителях. Если при использовании медной пары ретрансляторы нужно ставить через каждые несколько километров, то в ВОЛС это расстояние составляет не менее 100 км. При этом скорость, надёжность и долговечность традиционных СКС значительно уступают оптике.

  • Срок службы волоконно-оптических линий составляет полрядка четверти века. Через 25 лет непрерывного использования в несущей системе увеличивается затухание сигналов.
  • Если сравнивать медный и оптический кабель, то при одной и той же пропускной способности второй будет весить примерно в 4 раза меньше, а его объём даже при использовании защитных оболочек будет меньше, чем у медного, в несколько раз.
  • Перспективы. Использование волоконно-оптических линий связи позволяет легко наращивать вычислительные возможности локальных сетей благодаря установке более быстродействующего активного оборудования, причем без замены коммуникаций.

Область применения ВОЛС

Как уже было сказано выше, волоконно-оптические кабели (ВОК) используются для передачи сигналов вокруг (между) зданий и внутри объектов. При построении вешних коммуникационных магистралей предпочтение отдаётся оптическим кабелям, а внутри зданий (внутренние подсистемы) наравне с ними используется традиционная витая пара. Таким образом, различают ВОК для внешней (outdoor cables) и внутренней (indoor cables) прокладки.

К отдельному виду относятся соединительные кабели: внутри помещений они используются в качестве соединительных шнуров и коммуникаций горизонтальной разводки - для оснащения отдельных рабочих мест, а снаружи - для объединения зданий.

Монтаж волоконно-оптического кабеля осуществляется с помощью специальных инструментов и приборов.

Длина коммуникационных магистралей ВОЛС может достигать сотен километров (например, при постройке коммуникаций между городами), тогда как стандартная длина оптических волокон составляет несколько километров (в том числе потому, что работа со слишком большими длинами в некоторых случаях весьма неудобна). Таким образом, при построении трассы необходимо решить проблему сращивания отдельных световодов.

Различают два типа соединений: разъёмные и неразъёмные. В первом случае для соединения применяются оптические коннекторы (это связано с дополнительными финансовыми затратами, и, кроме того, при большом количестве промежуточных разъёмных соединений увеличиваются оптические потери).

Для неразъёмного соединения локальных участков (монтажа трасс) применяются механические соединители, клеевое сращивание и сваривание волокон. В последнем случае используют аппараты для сварки оптических волокон . Предпочтение тому или иному методу отдаётся с учётом назначения и условий применения оптики.

Наиболее распространённой является технология склеивания, для которой используется специальное оборудование и инструмент и которая включает несколько технологических операций.

В частности, перед соединением оптические кабели проходят предварительную подготовку: в местах будущих соединений удаляются защитное покрытие и лишнее волокно (подготовленный участок очищается от гидрофобного состава). Для надёжной фиксации световода в соединителе (коннекторе) используется эпоксидный клей, которым заполняется внутреннее пространство коннектора (он вводится в корпус разъёма с помощью шприца или дозатора). Для затвердевания и просушки клея применяется специальная печка, способная создать температуру 100 град. С.

После затвердевания клея излишки волокна удаляются, а наконечник коннектора шлифуется и полируется (качество скола имеет первостепенное значение). Для обеспечения высокой точности выполнение данных работ контролируется с помощью 200-кратного микроскопа . Полировка может осуществляться вручную или с помощью полированной машины.

Самое качественное соединение с минимальными потерями обеспечивает сваривание волокон. Этот метод используется при создании высокоскоростных ВОЛС. Во время сваривания происходит оплавление концов световода, для этого в качестве источника тепловой энергии могут использоваться газовая горелка, электрический заряд или лазерное излучение.

Каждый из методов имеет свои преимущества. Лазерная сварка благодаря отсутствию примесей позволяет получать самые чистые соединения. Для прочной сварки многомодовых волокон, как правило, используют газовые горелки. Наиболее распространенной является электрическая сварка, обеспечивающая высокую скорость и качество выполнения работ. Длительность плавления различных типов оптовых волокон отличается.

Для сварочных работ применяются специальный инструмент и дорогостоящее сварочное оборудование - автоматическое или полуавтоматическое. Современные сварочные аппараты позволяют контролировать качество сварки, а также проводить тестирование мест соединения на растяжение. Усовершенствованные модели оснащены программами, которые позволяют оптимизировать процесс сварки под конкретный тип оптоволокна.

После сращения место соединения защищается плотно насаживаемыми трубками, которые обеспечивают дополнительную механическую защиту.

Ещё один метод сращивания элементов оптоволокна в единую линию ВОЛС - механическое соединение. Этот способ обеспечивает меньшую чистоту соединения, чем сваривание, однако затухание сигнала в данном случае всё-таки меньше, чем при использовании оптических коннекторов.

Преимущество этого метода перед остальными состоит в том, что для проведения работ используются простые приспособления (например, монтажный столик), которые позволяют проводить работы в труднодоступных местах или внутри малогабаритных конструкций.

Механическое сращивание подразумевает использование специальных соединителей - так называемых сплайсов. Существует несколько разновидностей механических соединителей, которые представляют собой вытянутую конструкцию с каналом для входа и фиксации сращиваемых оптических волокон. Сама фиксация обеспечивается с помощью предусмотренных конструкцией защёлок. После соединения сплайсы дополнительно защищаются муфтами или коробами.

Механические соединители могут использоваться неоднократно. В частности, их применяют во время проведения ремонтных или восстановительных работ на линии.

ВОЛС: типы оптических волокон

Оптические волокна, используемые для построения ВОЛС, отличаются по материалу изготовления и по модовой структуре света. Что касается материала, различают полностью стеклянные волокна (со стеклянной сердцевиной и стеклянной оптической оболочкой), полностью пластиковые волокна (с пластиковой сердцевиной и оболочкой) и комбинированные модели (со стеклянной сердцевиной и с пластиковой оболочкой). Самую лучшую пропускную способность обеспечивают стеклянные волокна, более дешёвый пластиковый вариант используют в том случае, если требования к параметрам затухания и пропускной способности не критичны.

Волоконно-оптические линии связи - это вид связи, при котором информация передается по оптическим диэлектрическим волноводам, известным под названием "оптическое волокно". Оптическое волокно в настоящее время считается самой совершенной физической средой для передачи информации,

а также самой перспективной средой для передачи больших потоков информации на значительные расстояния. Основания так считать вытекают из ряда особенностей, присущих оптическим волноводам.

Структура кабеля:

  1. Осевой элемент:
    – стальной канат (стренга, проволока) в полимерном покрытии;
    – стеклопластиковый пруток в полимерном покрытии или без
  2. Оптические волокна
  3. Оптические модули
  4. Внутримодульный гидрофобный заполнитель
  5. Гидроизоляция сердечника
  6. Промежуточная оболочка
    – полиэтилен (отсутствует в ИКБЛ…)
  7. Гидроизоляция бронирующего слоя
    – гидрофобный заполнитель или водоблокирующие элементы
  8. Броня из круглых стальных оцинкованных проволок
  9. Защитная оболочка
    – полиэтилен или полимер, не распространяющий горение (ИКБН…)

1.1 Физические особенности.
1. Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей (Fo=10**14 Гц). Это означает, что по оптической линии связи можно передавать информацию со скоростью порядка 10**12 бит/с или Терабит/с. Говоря другими словами, по одному волокну можно передать одновременно 10 миллионов телефонных разговоров и миллион видеосигналов. Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга. Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптического канала связи. На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут.

2. Очень малое (по сравнению с другими средами) затухание светового сигнала в волокне. Лучшие образцы российского волокна имеют затухание 0.22 дБ/км на длине волны 1.55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. Для сравнения, лучшее волокно Sumitomo на длине волны 1.55 мкм имеет затухание 0.154 дБ/км. В оптических лабораториях США разрабатываются еще более "прозрачные", так называемые фторцирконатные волокна с теоретическим пределом порядка 0,02 дБ/км на длине волны 2.5 мкм. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с.
1.2 Технические особенности.
1.Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди.

2. Оптические волокна имеют диаметр около 100 мкм., то есть очень компактны и легки, что делает их перспективными для использования в авиации, приборостроении, в кабельной технике.

3. Стеклянные волокна - не металл, при строительстве систем связи автоматически достигается гальваническая развязка сегментов. Применяя особо прочный пластик, на кабельных заводах изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении. Такие кабели можно монтировать на мачтах существующих линий электропередач, как отдельно, так и встроенные в фазовый провод, экономя значительные средства на прокладку кабеля через реки и другие преграды.

4. Системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Волоконно-оптические линии связи нельзя подслушать неразрушающим способом. Всякие воздействия на волокно могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии. Теоретически существуют способы обойти защиту путем мониторинга, но затраты на реализацию этих способов будут столь велики, что превзойдут стоимость перехваченной информации.

Существует способ скрытой передачи информации по оптическим линиям связи. При скрытой передаче сигнал от источника излучения модулируется не по амплитуде, как в обычных системах, а по фазе. Затем сигнал смешивается с самим собой, задержанным на некоторое время, большее, чем время когерентности источника излучения.

При таком способе передачи информация не может быть перехвачена амплитудным приемником излучения, так как он зарегистрирует лишь сигнал постоянной интенсивности.

Для обнаружения перехватываемого сигнала понадобится перестраиваемый интерферометр Майкельсона специальной конструкции. Причем, видность интерференционной картины может быть ослаблена как 1:2N, где N - количество сигналов, одновременно передаваемых по оптической системе связи. Можно распределить передаваемую информацию по множеству сигналов или передавать несколько шумовых сигналов, ухудшая этим условия перехвата информации. Потребуется значительный отбор мощности из волокна, чтобы несанкционированно принять оптический сигнал, а это вмешательство легко зарегистрировать системами мониторинга.

5.Важное свойство оптического волокна - долговечность. Время жизни волокна, то есть сохранение им своих свойств в определенных пределах, превышает 25 лет, что позволяет проложить оптико-волоконный кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие.

Есть в волоконной технологии и свои недостатки:

1. При создании линии связи требуются высоконадежные активные элементы, преобразующие электрические сигналы в свет и свет в электрические сигналы. Необходимы также оптические коннекторы (соединители) с малыми оптическими потерями и большим ресурсом на подключение-отключение. Точность изготовления таких элементов линии связи должна соответствовать длине волны излучения, то есть погрешности должны быть порядка доли микрона. Поэтому производство таких компонентов оптических линий связи очень дорогостоящее.

2. Другой недостаток заключается в том, что для монтажа оптических волокон требуется прецизионное, а потому дорогое, технологическое оборудование.

3. Как следствие, при аварии (обрыве) оптического кабеля затраты на восстановление выше, чем при работе с медными кабелями.

Преимущества от применения волоконно-оптических линий связи (ВОЛС) настолько значительны, что несмотря на перечисленные недостатки оптического волокна, эти линии связи все шире используются для передачи информации.

Преимущества ВОЛС

Передача информации по ВОЛС имеет целый ряд достоинств перед передачей по медному кабелю. Стремительное внедрение в информационные сети Волс является следствием преимуществ, вытекающих из особенностей распространения сигнала в оптическом волокне.

Широкая полоса пропускания - обусловлена чрезвычайно высокой частотой несущей 1014Гц. Это дает потенциальную возможность передачи по одному оптическому волокну потока информации в несколько терабит в секунду. Большая полоса пропускания - это одно из наиболее важных преимуществ оптического волокна над медной или любой другой средой передачи информации.

Малое затухание светового сигнала в волокне. Выпускаемое в настоящее время отечественными и зарубежными производителями промышленное оптическое волокно имеет затухание 0,2-0,3 дБ на длине волны 1,55 мкм в расчете на один километр. Малое затухание и небольшая дисперсия позволяют строить участки линий без ретрансляции протяженностью до 100 км и более.

Низкий уровень шумов в волоконно-оптическом кабеле позволяет увеличить полосу пропускания, путем передачи различной модуляции сигналов с малой ибыточностью кода.

Высокая помехозащищенность . Поскольку волокно изготовлено из диэлектрического материала, оно невосприимчиво к электромагнитным помехам со стороны окружающих медных кабельных систем и электрического оборудования, способного индуцировать электромагнитное излучение (линии электропередачи, электродвигательные установки и т.д.). В многоволоконных кабелях также не возникает проблемы перекрестного влияния электромагнитного излучения, присущей многопарным медным кабелям.

Малый вес и объем. Волоконно-оптические кабели (ВОК) имеют меньший вес и объем по сравнению с медными кабелями в расчете на одну и ту же пропускную способность. Например, 900-парный телефонный кабель диаметром 7,5 см, может быть заменен одним волокном с диаметром 0,1 см. Если волокно "одеть" в множество защитных оболочек и покрыть стальной ленточной броней, диаметр такого ВОК будет 1,5 см, что в несколько раз меньше рассматриваемого телефонного кабеля.

Высокая защищенность от несанкционированного доступа. Поскольку ВОК практически не излучает в радиодиапазоне, то передаваемую по нему информацию трудно подслушать, не нарушая приема-передачи. Системы мониторинга (непрерывного контроля) целостности оптической линии связи, используя свойства высокой чувствительности волокна, могут мгновенно отключить "взламываемый" канал связи и подать сигнал тревоги. Сенсорные системы, использующие интерференционные эффекты распространяемых световых сигналов (как по разным волокнам, так и разной поляризации) имеют очень высокую чувствительность к колебаниям, к небольшим перепадам давления. Такие системы особенно необходимы при создании линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных.

Гальваническая развязка элементов сети. Данное преимущество оптического волокна заключается в его изолирующем свойстве. Волокно помогает избежать электрических "земельных" петель, которые могут возникать, когда два сетевых устройства неизолированной вычислительной сети, связанные медным кабелем, имеют заземления в разных точках здания, например на разных этажах. При этом может возникнуть большая разность потенциалов, что способно повредить сетевое оборудование. Для волокна этой проблемы просто нет.

Взрыво- и пожаробезопасность. Из-за отсутствия искрообразования оптическое волокно повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.

Экономичность ВОК. Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличии от меди. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. При этом ВОК позволяет передавать сигналы на значительно большие расстояния без ретрансляции. Количество повторителей на протяженных линиях сокращается при использовании ВОК. При использовании солитонных систем передачи достигнуты дальности в 4000 км без регенерации (то есть только с использованием оптических усилителей на промежуточных узлах) при скорости передачи выше 10 Гбит/с.

Длительный срок эксплуатации. Со временем волокно испытывает деградацию. Это означает, что затухание в проложенном кабеле постепенно возрастает. Однако, благодаря совершенству современных технологий производства оптических волокон, этот процесс значительно замедлен, и срок службы ВОК составляет примерно 25 лет. За это время может смениться несколько поколений/стандартов приемо-передающих систем.

Удаленное электропитание. В некоторых случаях требуется удаленное электропитание узла информационной сети. Оптическое волокно не способно выполнять функции силового кабеля. Однако, в этих случаях можно использовать смешанный кабель, когда наряду с оптическими волокнами кабель оснащается медным проводящим элементом. Такой кабель широко используется как в России, так и за рубежом.