Назначение термистор конструкция применение тв трехконтактный. Принцип работы термистора. Общая характеристика термистора

Здравствуйте любители электроники, сегодня рассмотрим радиокомпонент, который защищает вашу технику, что такое термистор его применение в электронике.

Этот термин, происходит от двух слов, термический и резистор, относящийся к полупроводникам. Его фишка в изменении своего электрического сопротивления, которая напрямую зависит от температуры.

Устройство термисторов

Все термисторы изготавливаются из материалов, у которых высокий температурный коэффициент сопротивления, популярный и пресловутый (ткс). Этот коэффициент намного, в несколько раз выше, чем у остальных металлов.

Изготавливаются термисторы с положительным и отрицательным температурным коэффициентом, PTC и NTC соответственно. Вот отличная подсказка при нахождении этого прибора на плате, устанавливаются они в цепях питания электроники.

Где применяются, как работает термистор

Нашли широкое применение в электротехнике, особенно там, где весьма важен, особый контроль над температурным режимом. Очень важно их наличие в дорогостоящем оборудовании, компьютерной и промышленной технике.

Применяются для эффективного ограничения пускового тока, он и ограничивается термистором. Он изменяет своё сопротивление в зависимости от силы проходящего через него тока, по причине нагрева прибора.

Огромный плюс компонента, это способность восстанавливаться, через малое время при остывании.

Как можно проверить термистор мультиметром

Что такое термисторы и где они применяются, стало немного понятнее, продолжим изучать тему с его проверки.

Необходимо усвоить важное правило касающегося любого ремонта электроники, внешний, визуальный осмотр. Выискиваем следы перегрева, потемнение, просто изменение цвета, отколовшиеся частички корпуса, не оторвался ли, контактный вывод.

Тестер как обычно, включаем и производим замеры в режиме сопротивления. Подключаем к выводам термического резистора, при его исправном состоянии увидим сопротивление, указанное на корпусе.

Берем в руки зажигалку или паяльник, думаю, он у многих на столе живёт. Начинаем медленно нагрев, и наблюдаем на изменение сопротивления на приборе. При исправном термисторе, сопротивление должно снижаться, а поле некоторого времени, восстановиться.

Маркировка у термисторов различная, всё зависит от фирмы производителя, этому вопросу отдельную статью. В данном тексте, мы рассматриваем тему, что такое термистор и его применение в электроники.

Развитие электроники с каждым годом набирает обороты. Но, несмотря на новые изобретения, в электрических схемах надёжно работают устройства, сконструированные ещё в начале XX века. Один из таких приборов - термистор. Форма и назначение этого элемента настолько разнообразны, что быстро отыскать его в схеме удаётся только опытным работникам сферы электротехники. Понять, что такое термистор, можно лишь владея знаниями о строении и свойствах проводников, диэлектриков и полупроводников.

Описание прибора

Датчики температуры широко используются в электротехнике. Почти во всех механизмах применяются аналоговые и цифровые микросхемы термометров, термопары, резистивные датчики и термисторы. Приставка в названии прибора говорит о том, что термистор - это такое устройство, которое зависит от влияния температуры. Количество тепла в окружающей среде - главенствующий показатель в его работе. Благодаря нагреванию или охлаждению, меняются параметры элемента, появляется сигнал, доступный для передачи на механизмы контроля или измерения.

Термистор - это прибор электроники, у которого значения температуры и сопротивления связаны обратной пропорциональностью.

Существуют и другое его название - терморезистор . Но это не вполне правильно, так как на самом деле термистор является одним из подвидов терморезистора . Изменение теплоты может влиять на сопротивление резистивного элемента двумя способами: либо увеличивая его, либо уменьшая.

Поэтому термосопротивления по температурному коэффициенту подразделяются на РТС (положительные) и NTC (отрицательные). РТС - резисторы получили название позисторов, а NTC - термисторов.

Отличие РТС и NTC приборов состоит в изменении их свойств при воздействии климатических условий. Сопротивление позисторов прямо пропорционально количеству тепла в окружающей среде. При нагреве NTC - приборов его значение уменьшается.

Таким образом, повышение температуры позистора приведёт к росту его сопротивления, а у термистора - к падению.

Вид терморезистора на электрических принципиальных схемах похож на обыкновенный резистор . Отличительной чертой является прямая под наклоном, которая перечёркивает элемент. Тем самым показывая, что сопротивление не постоянно, а может изменяться в зависимости от увеличения или уменьшения температуры в окружающей среде.

Основное вещество для создания позисторов - титанат бария. Технология изготовления NTC - приборов более сложная из-за смешивания различных веществ: полупроводников с примесями и стеклообразных оксидов переходных металлов.

Классификация термисторов

Габариты и конструкция терморезисторов различны и зависят от области их применения.

Форма термисторов может напоминать:

Самые маленькие терморезисторы в виде бусинок. Их размеры меньше 1 миллиметра, а характеристики элементов отличаются стабильностью. Недостатком является невозможность взаимной подмены в электрических схемах.

Классификация терморезисторов по числу градусов в Кельвинах:

  • сверх высокотемпературные - от 900 до 1300;
  • высокотемпературные - от 570 до 899;
  • среднетемпературные - от 170 до 510;
  • низкотемпературные - до 170.

Максимальный нагрев хоть и допустим для термоэлементов, но сказывается на их работе ухудшением качества и появлением значительной погрешности в показателях.

Технические характеристики и принцип действия

Выбор терморезистора для контролирующего или измерительного механизма проводят по номинальным паспортным или справочным данным. Принцип действия, основные характеристики и параметры термисторов и позисторов похожи. Но некоторые отличия все же существуют.

РТС - элементы оцениваются тремя определяющими показателями: температурной и статической вольт - амперной характеристикой, термическим коэффициентом сопротивления (ТКС).

У термистора список более широкий.

Помимо параметров, аналогичных позистору, показатели следующие:

  • номинальное сопротивление;
  • коэффициенты рассеяния, энергетической чувствительности и температуры;
  • постоянная времени;
  • температура и мощность по максимуму.

Из этих показателей основными, которые влияют на выбор и оценивание термистора, являются:

  • номинальное сопротивление;
  • термический коэффициент сопротивления;
  • мощность рассеяния;
  • интервал рабочей температуры.

Номинальное сопротивление определяется при конкретной температуре (чаще всего двадцать градусов Цельсия). Его значение у современных терморезисторов колеблется в пределах от нескольких десятков до сотен тысяч ом.

Допустима некоторая погрешность значения номинального сопротивления. Она может составлять не более 20% и должна быть указана в паспортных данных прибора.

ТКС зависит от теплоты. Он устанавливает величину изменения сопротивления при колебании температуры на одно деление. Индекс в его обозначении указывает на количество градусов Цельсия либо Кельвина в момент измерений.

Выделение теплоты на детали появляется из-за протекания по ней тока при включении в электрическую цепь. Мощность рассеяния - величина, при которой резистивный элемент разогревается от 20 градусов Цельсия до максимально допустимой температуры.

Интервал рабочей температуры показывает такое её значение, при котором прибор работает длительное время без погрешностей и повреждений.

Принцип действия термосопротивлений основан на изменении их сопротивления под влиянием теплоты.

Происходит это по нескольким причинам:

  • из-за фазового превращения;
  • ионы с непостоянной валентностью более энергично обмениваются электронами;
  • сосредоточенность заряженных частиц в полупроводнике распределяется другим образом.

Термисторы используются в сложных устройствах, которые применяются в промышленности, сельском хозяйстве, схемах электроники автомобилей. А также встречаются в приборах, которые окружают человека в быту - стиральных, посудомоечных машинах, холодильниках и другом оборудовании с контролем температуры.

Терморезистором называется полупроводниковый компонент с температурозависимым электрическим сопротивлением. Изобретенный в далеком 1930 году ученым Самюэлем Рубеном, по сей день данный компонент находит самое широкое применение в технике.

Изготавливают терморезисторы из различных материалов, которых достаточно высок, - значительно превосходит металлические сплавы и чистые металлы, то есть именно из особых, специфичных полупроводников.

Непосредственно основной резистивный элемент получают посредством порошковой металлургии, обрабатывая халькогениды, галогениды и оксиды определенных металлов, придавая им различные формы, например форму дисков или стержней различных размеров, больших шайб, средних трубок, тонких пластинок, маленьких бусинок, размерами от единиц микрон до десятков миллиметров.


По характеру корреляции сопротивления элемента и его температуры, разделяют терморезисторы на две большие группы - на позисторы и термисторы . Позисторы обладают положительным ТКС (по этой причине позисторы еще называют PTC-термисторами), а термисторы - отрицательным (их называют поэтому NTC-термисторами).

Термистор - температурно-зависимый резистор, изготавливается из полупроводникового материала, имеющего отрицательный температурный коэффициент и высокую чувствительность, позистор - температурно-зависимый резистор, имеющий положительный коэффициент. Так, с возрастанием температуры корпуса позистора растет и его сопротивление, а с ростом температуры термистора - его сопротивление соответственно уменьшается.

Материалами для терморезисторов сегодня служат: смеси поликристаллических оксидов переходных металлов, таких как кобальт, марганец, медь и никель, соединений AIIIBV-типа, а также легированных, стеклообразных полупроводников, таких как кремний и германий, и некоторых других веществ. Примечательны позисторы из твердых растворов на базе титаната бария.

Терморезисторы в целом можно классифицировать на:

    Низкотемпературного класса (рабочая температура ниже 170 К);

    Среднетемпературного класса (рабочая температура от 170 К до 510 К);

    Высокотемпературного класса (рабочая температура от 570 К и выше);

    Отдельный класс высокотемпературных (рабочая температура от 900 К до 1300 К).

Все эти элементы, как термисторы, так и позисторы, могут работать при разнообразных климатических внешних условиях и при существенных физических внешних и токовых нагрузках. Однако в жестких термоцикличных режимах, со временем меняются их исходные термоэлектрические характеристики, как то номинальное сопротивление при комнатной температуре и температурный коэффициент сопротивления.

Встречаются и комбинированные компоненты, например терморезисторы с косвенным нагревом . В корпусах таких приборов размещены сам и терморезистор и гальванически изолированный нагревательный элемент, задающий исходную температуру терморезистора, и, соответствующим образом, его начальное электрическое сопротивление.

Данные приборы применяются в качестве переменных резисторов, управляемых напряжением, приложенным к нагревательному элементу терморезистора.

В зависимости от того, как выбрана рабочая точка на ВАХ конкретного компонента, определяется и режим работы терморезистора в схеме. А сама ВАХ связана с конструктивными особенностями и с приложенной к корпусу компонента температурой.

Для контроля за вариациями температур и с целью компенсации динамически меняющихся параметров, таких как протекающий ток и приложенное напряжение в электрических цепях, изменяющихся вслед за изменениями температурных условий, применяют терморезисторы с выставлением рабочей точки на линейном участке ВАХ.

Но рабочая точка выставляется традиционно на спадающем участке ВАХ (NTC-термисторы), если термистор применяется, например, в качестве пускового устройства, реле времени, в системе отслеживания и измерения интенсивности СВЧ-излучения, в системах пожарной сигнализации, в установках управления расходом сыпучих веществ и жидкостей.

Наиболее популярны сегодня среднетемпературные термисторы и позисторы с ТКС от -2,4 до -8,4 % на 1 К . Они работают в широком диапазоне сопротивлений от единиц Ом до единиц мегаом.

Встречаются позисторы с относительно малым ТКС от 0,5% до 0,7% на 1 К, изготовленные на базе кремния. Их сопротивление изменяется практически линейно. Подобные позисторы широко применяются в системах температурной стабилизации и в системах активного охлаждения силовых полупроводниковых ключей в разнообразных современных электронных приборах, особенно - в мощных. Эти компоненты легко вписываются в схемы и не занимают много места на платах.

Типичный позистор имеет форму керамического диска, иногда в одном корпусе устанавливаются последовательно несколько элементов, но чаще - в одиночном исполнении в защитном покрытии из эмали. Позисторы часто применяют в качестве предохранителей для защиты электрических схем от перегрузок по напряжению и току, а также в качестве термодатчиков и автостабилизирующих элементов, в силу их неприхотливости и физической устойчивости.

Термисторы широко применяются в многочисленных областях электроники, особенно там, где важен точный контроль за температурным процессом. Это актуально для аппаратуры передачи данных, компьютерной техники, высокопроизводительных ЦПУ и промышленного оборудования высокой точности.

Один из простейших и весьма популярных примеров применения термистора – эффективное ограничение пускового тока. В момент подачи напряжения к блоку питания от сети, происходит чрезвычайно резкий значительной емкости, и в первичной цепи протекает большой зарядный ток, способный сжечь диодный мост.

Этот ток здесь и ограничивается термистором, то есть данный компонент схемы изменяет свое сопротивление в зависимости от проходящего по нему тока, поскольку в соответствии с законом Ома происходит его нагрев. Термистор после этого восстанавливает свое исходное сопротивление, через несколько минут, как только остынет до комнатной температуры.

Термодатчик относится к числу наиболее часто используемых устройств. Его основное предназначение заключается в том, чтобы воспринимать температуру и преобразовывать ее в сигнал. Существует много разных типов датчиков. Наиболее распространенными из них являются термопара и терморезистор.

Виды

Обнаружение и измерение температуры – очень важная деятельность, имеет множество применений: от простого домохозяйства до промышленного. Термодатчик – это устройство, которое собирает данные о температуре и отображает их в понятном для человека формате. Рынок температурного зондирования демонстрирует непрерывный рост из-за его потребности в исследованиях и разработках в полупроводниковой и химической промышленностях.

Термодатчики в основном бывают двух типов:

  • Контактные. Это термопары, заполненные системные термометры, термодатчики и биметаллические термометры;
  • Бесконтактные датчики. Это инфракрасные устройства, имеют широкие возможности в секторе обороны из-за их способности обнаруживать тепловую мощность излучения оптических и инфракрасных лучей, излучаемых жидкостями и газами.

Термопара (биметаллическое устройство) состоит из двух разных видов проводов (или даже скрученных) вместе. Принцип действия термопары основан на том, что скорости, с которыми расширяются два металла, между собой отличаются. Один металл расширяется больше, чем другой, и начинает изгибаться вокруг металла, который не расширяется.

Терморезистор – это своего рода резистор, сопротивление которого определяется его температурой. Последний обычно используют до 100 ° C, тогда как термопара предназначена для более высоких температур и не так точна. Схемы с использованием термопар обеспечивают милливольтные выходы, в то время как термисторные схемы – высокое выходное напряжение.

Важно! Основное достоинство терморезисторов заключается в том, что они дешевле термопар. Их можно купить буквально за гроши, и они просты в использовании.

Принцип действия

Терморезисторы обычно чувствительны и имеют разное термосопротивление. В ненагретом проводнике атомы, составляющие материал, имеют тенденцию располагаться в правильном порядке, образуя длинные ряды. При нагревании полупроводника увеличивается количество активных носителей заряда. Чем больше доступных носителей заряда, тем большей проводимостью обладает материал.

Кривая сопротивления и температуры всегда показывает нелинейную характеристику. Терморезистор лучше всего работает в температурном диапазоне от -90 до 130 градусов по Цельсию.

Важно! Принцип работы терморезистора основан на базовой корреляции между металлами и температурой. Они изготавливаются из полупроводниковых соединений, таких как сульфиды, оксиды, силикаты, никель, марганец, железо, медь и т. д., могут ощущать даже небольшое температурное изменение.

Электрон, подталкиваемый приложенным электрическим полем, может перемещаться на относительно большие расстояния до столкновения с атомом. Столкновение замедляет его перемещение, поэтому электрическое «сопротивление» будет снижаться. При более высокой температуре атомы больше смещаются, и когда конкретный атом несколько отклоняется от своего обычного «припаркованного» положения, он, скорее всего, столкнется с проходящим электроном. Это «замедление» проявляется в виде увеличения электрического сопротивления.

Для информации. Когда материал охлаждается, электроны оседают на самые низкие валентные оболочки, становятся невозбужденными и, соответственно, меньше двигаются. При этом сопротивление движению электронов от одного потенциала к другому падает. По мере увеличения температуры металла сопротивление металла потоку электронов увеличивается.

Особенности конструкций

По своей природе терморезисторы являются аналоговыми и делятся на два вида:

  • металлические (позисторы),
  • полупроводниковые (термисторы).

Позисторы

Материалом для терморезисторов можно использовать далеко не любые проводники тока, так как к этим устройствам предъявляются некоторые требования. Материал для их изготовления должен обладать высоким ТКС.

Для таких требований подходят медь и платина, не считая их высокой стоимости. Практически широко применяются медные образцы терморезисторов ТСМ, у которых линейность зависимости сопротивления от температуры намного выше. Их недостатком является малое удельное сопротивление, быстрая окисляемость. В связи с этим термосопротивления на основе меди имеют ограниченное применение, не более 180 градусов.

Позисторы PTC предназначены для ограничения тока при нагревании от более высокой рассеиваемой мощности. Поэтому их размещают последовательно в цепь переменного тока, чтобы уменьшить ток. Они (буквально любой из них) становятся горячими от слишком большого тока. Эти приспособления используют в устройстве защиты цепи, таком как предохранитель, в качестве таймера в схеме размагничивания катушек ЭЛТ-мониторов.

Для информации. Что такое позистор? Прибор, электрическое сопротивление которого растет в зависимости от его температуры, называется позистором (PTC).

Термисторы

Устройство с отрицательным температурным коэффициентом (это когда, чем выше температура, тем ниже сопротивление) называется терморезистором NTC.

Для информации. Все полупроводники имеют меняющееся сопротивление по мере увеличения или уменьшения температуры. В этом проявляется их сверхчувствительность.

Термисторы NTC широко используются в качестве ограничителей пускового тока, самонастраивающихся сверхтоковых защит и саморегулируемых нагревательных элементов. Обычно эти приборы устанавливаются параллельно в цепь переменного тока.

Их можно встретить повсюду: в автомобилях, самолетах, кондиционерах, компьютерах, медицинском оборудовании, инкубаторах, фенах, электрических розетках, цифровых термостатах, переносных обогревателях, холодильниках, печах, плитах и других всевозможных приборах.

Термистор используется в мостовых цепях.

Технические характеристики

Терморезисторы используют в батареях зарядки. Их основными характеристиками являются:

  1. Высокая чувствительность, температурный коэффициент сопротивления в 10-100 раз больше, чем у металла;
  2. Широкий диапазон рабочих температур;
  3. Малый размер;
  4. Простота использования, значение сопротивления может быть выбрано между 0,1 ~ 100 кОм;
  5. Хорошая стабильность;
  6. Сильная перегрузка.

Качество прибора измеряется с точки зрения стандартных характеристик, таких как время отклика, точность, неприхотливость при изменениях других физических факторов окружающей среды. Срок службы и диапазон измерений – это еще несколько важных характеристик, которые необходимо учитывать при рассмотрении использования.

Область применения

Термисторы не очень дорогостоящие и могут быть легко доступны. Они обеспечивают быстрый ответ и надежны в использовании. Ниже приведены примеры применения устройств.

Термодатчик воздуха

Автомобильный термодатчик – это и есть терморезистор NTC, который сам по себе является очень точным при правильной калибровке. Прибор обычно расположен за решеткой или бампером автомобиля и должен быть очень точным, так как используется для определения точки отключения автоматических систем климат-контроля. Последние регулируются с шагом в 1 градус.

Автомобильный термодатчик

Терморезистор встраивается в обмотку двигателя. Обычно этот датчик подключается к реле температуры (контроллеру) для обеспечения «Автоматической температурной защиты». Когда температура двигателя превышает заданное значение, установленное в реле, двигатель автоматически выключается. Для менее критического применения он используется для срабатывания сигнализации о температурном превышении с индикацией.

Датчик пожара

Можно сделать свое собственное противопожарное устройство. Собрать схему из термистора или биметаллических полосок, позаимствованных из пускателя. Тем самым можно вызвать тревогу, основанную на действии самодельного термодатчика.

В электронике всегда приходится что-то измерять, например, температуру. С этой задачей лучше всего справляется терморезистор – электронный компонент на основе полупроводников. Прибор обнаруживает изменение физического количества и преобразуется в электрическое количество. Они являются своего рода мерой растущего сопротивления выходного сигнала. Существует две разновидности приборов: у позисторов с ростом температуры растет и сопротивление, а у термисторов оно наоборот падает. Это противоположные по действию и одинаковые по принципу работы элементы.

Видео

1.ЧТО ЭТО ТАКОЕ?
Терморезистор – это полупроводниковый резистор , в котором используется зависимость сопротивления полупроводника от температуры.
Терморезисторы характеризуются большим температурным коэффициентом сопротивления (ТКС), значение которого превосходит аналогичный параметр у металлов в десятки и даже сотни раз.
Терморезисторы устроены очень просто и изготавливаются различной формы и размеров


Для того, чтобы более-менее представлять себе физические основы работы данного радиокомпонента, сначала следует познакомиться со строением и свойствами полупроводников (см. мою статью «Полупроводниковый диод»).
Краткое напоминание. В полупроводниках имеются свободные носители электрического заряда двух типов: «-» электроны и «+» дырки. При постоянной температуре окружающей среды они спонтанно образуются (диссоциация) и исчезают (рекомбинация). Средняя концентрация свободных носителей в полупроводнике остаётся неизменной – это динамическое равновесие. При изменении температуры происходит нарушение такого равновесия: если температура увеличивается, то концентрация носителей возрастает (проводимость увеличивается, сопротивление уменьшается), а если уменьшается, то и концентрация свободных носителей также падает (проводимость уменьшается, сопротивление возрастает).
Зависимость удельного сопротивления полупроводника от температуры показана на графике .
Как видно, если температура стремится к абсолютному нулю (-273,2С), то полупроводник становится почти идеальным диэлектриком. Если же температура сильно возрастает, то, наоборот, почти идеальным проводником. Но самым важным является то, что зависимость R(T) у полупроводника сильно выражена в диапазоне обычных температур, допустим, от -50С до +100С (можно взять немного шире).

Терморезистор был изобретён Самюэлем Рубеном в 1930г.

2.ОСНОВНЫЕ ПАРАМЕТРЫ
2.1. Номинальное сопротивление – сопротивление терморезистора при 0°С (273,2К)
2.2. ТКС – это физическая величина, равная относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на 1°С (1К).
Различают терморезисторы с отрицательным (термисторы ) и положительным (позисторы ) ТКС. Их ещё называют NTC -термисторы (Negative temperature coefficient) и PTC -термисторы (Positive temperature coefficient) соответственно. У позисторов с ростом температуры растет и сопротивление, а у термисторов – наоборот: при увеличении температуры сопротивление падает.
Величину ТКС обычно приводят в справочниках для температуры 20°С (293 К).

2.3. Интервал рабочих температур
Различают терморезисторы низкотемпературные (рассчитанные на работу при температуpax ниже 170 К), среднетемпературные (170–510 К) и высокотемпературные (выше 570 К). Кроме того, существуют терморезисторы, предназначенные для работы при 4,2 К и ниже и при 900–1300 К. Наиболее широко используются среднетемпературные терморезисторы с ТКС от -2,4 до -8,4 %/К и номинальным сопротивлением 1–106 Ом.

Примечание. В физике применяется так называемая шкала абсолютных температур (термодинамическая шкала). По ней самая низкая температура в природе (абсолютный ноль) принята за начало отсчёта. По этой шкале температура может быть только со знаком «+». Отрицательной абсолютной температуры не существует. Обозначение: Т, единица измерения 1К (Кельвин). 1К=1°С, поэтому формула перевода температуры из шкалы Цельсия в шкалу термодинамических температур очень проста: Т=t+273 (примерно) или, соответственно, наоборот: t=Т-273. Здесь t – температура по шкале Цельсия.
Соотношение шкал Цельсия и Кельвина показано на

2.4. Номинальная мощность рассеяния – это мощность, при которой терморезистор сохраняет свои параметры в заданных техническими условиями пределах в процессе эксплуатации.

3. РЕЖИМ РАБОТЫ
Режим работы терморезисторов зависит от того, на каком участке статической вольт-амперной характеристики (ВАХ – ) выбрана рабочая точка. В свою очередь ВАХ зависит как от конструкции, размеров и основных параметров терморезистора, так и от температуры, теплопроводности окружающей среды, тепловой связи между терморезистором и средой. Терморезисторы с рабочей точкой на начальном (линейном) участке ВАХ используются для измерения и контроля температуры и компенсации температурных изменений параметров электрических цепей и электронных приборов. Терморезисторы с рабочей точкой на нисходящем участке ВАХ (с отрицательным сопротивлением) применяются в качестве пусковых реле, реле времени, измерителей мощности электро­магнит­ного излучения на СВЧ, стабилизаторов температуры и напряжения. Режим работы терморезистора, при котором рабочая точка находится также на ниспадающем участке ВАХ (при этом используется зависимость сопротивления терморезистора от температуры и теплопроводности окружающей среды), характерен для терморезисторов, применяемых в системах теплового контроля и пожарной сигнализации, регулирования уровня жидких и сыпучих сред; действие таких терморезисторов основано на возникновении релейного эффекта в цепи с терморезистором при изменении температуры окружающей среды или условий теплообмена терморезистора со средой.
Существуют терморезисторы особой конструкции – с косвенным подогревом. В таких терморезисторах имеется подогревная обмотка, изолированная от полупроводникового резистивного элемента (если при этом мощность, выделяющаяся в резистивном элементе, мала, то тепловой режим терморезистора определяется температурой подогревателя, а, следовательно, током в нём). Таким образом, появляется возможность изменять состояние терморезистора, не меняя ток через него. Такой терморезистор используется в качестве переменного резистора, управляемого электрически на расстоянии.
Из терморезисторов с положительным температурным коэффициентом наибольший интерес представляют терморезисторы, изготовленные из твёрдых растворов на основе BaTiO. Их и называют позисторами. Известны терморезисторы с небольшим положительным ТКС (0,5–0,7 %/К), выполненные на основе кремния с электронной проводимостью; их сопротивление изменяется с температурой примерно по линейному закону. Такие терморезисторы используются, например, для температурной стабилизации электронных устройств на транзисторах.
На рис. показана Зависимость сопротивления терморезистора от температуры. Линия 1 - для ТКС < 0, линия 2 - для ТКС > 0.

4. ПРИМЕНЕНИЕ
При использовании терморезисторов в качестве датчиков различают два основных режима.
В первом режиме температура терморезистора практически определяется только температурой окружающей среды. Ток, проходящий через терморезистор, очень мал и практически не нагревает его.
Во втором режиме терморезистор нагревается проходящим по нему током, а температура терморезистора определяется изменяющимися условиями теплоотдачи, например интенсивностью обдува, плотностью окружающей газовой среды и т. п.
Так как термисторы обладают отрицательным коэффициентом (NTC), а позисторы положительным коэффициентом (РТС), то и на схемах они будут обозначаться соответствующим образом .

NTC-термисторы – полупроводниковые резисторы, чувствительные к температуре, сопротивление которых снижается с повышением температуры.

Применение NTC-термисторов


РТС-термисторы - это керамические компоненты, сопротивление которых мгновенно возрастает, когда температура превышает допустимый предел. Эта особенность делает их идеальными для различного применения в современном электронном оборудовании.

Применение РТС -термисторов

Иллюстрации к применению терморезисторов:


- температурные датчики автомобилей, в системах регулировки скорости вращения кулеров, в медицинских термометрах


- в домаших метеостанциях, кондиционерах, микроволновках


- в холодильниках, чайниках, тёплых полах


- в посудомоечных машинах, датчиках расхода топлива автомобилей, датчиках расхода воды


- в картриджах лазерных принтеров, системах размагничивания CRT-мониторов, усиановках вентиляции и кондиционирования

5. Примеры радиолюбительских конструкций с применением терморезисторов

5.1. Устройство защиты ламп накаливания на терморезисторе
Для ограничения первоначального тока иногда достаточно включить последовательно с лампой накаливания постоянный резистор. В этом случае правильный выбор сопротивления резистора зависит от мощности ламп накаливания и от тока, потребляемого лампой. В технической литературе имеются сведения о результатах измерений бросков тока через лампу в ее холодном и разогретом состояниях при включении последовательно с лампой ограничительного резистора. Результаты измерений показывают, что броски тока через нить лампы накаливания составляют 140% от номинального тока, протекающего через нить в разогретом состоянии и при условии, если сопротивление последовательно включенного ограничительного резистора составляет 70-75% от номинального сопротивления лампы накаливания в рабочем состоянии. А из этого следует вывод, что ток предварительного прогрева нити лампы также составляет 70-75% от номинального тока.


К основным преимуществам схемы следует отнести то, что она исключает даже небольшие броски тока через нить лампы накаливания при включении. Обеспечивается это благодаря установленному в устройстве защиты терморезистору R3. В начальный момент включения в сеть терморезистор R3 имеет максимальное сопротивление, ограничивающее протекающий через этот резистор ток. При постепенном нагревании терморезистора R3 его сопротивление плавно уменьшается, в результате чего ток через лампу накаливания и резистор R2 также плавно нарастает. Схема устройства рассчитана таким образом, что при достижении на лампе накаливания напряжения 180- 200 В на резисторе R2 падает напряжение, что приводит к срабатыванию электромагнитного реле К1. При этом контакты реле KL1 и К1.2 замыкаются.
Обратите внимание на то, что в цепи ламп накаливания последовательно включен еще один резистор - R4, который также ограничивает броски тока и защищает схему от перегрузок. При замыкании контактов реле KL1 происходит подключение управляющего электрода тиристора VS1 к его аноду, а это в свою очередь приводит к открыванию тиристора, который в конечном счете шунтирует терморезистор R3, выключая его из работы. Контакты реле К1.2 шунтируют резисторR4, что приводит к увеличению напряжения на лампах накаливания Н2 и НЗ, и их нити начинают светиться более интенсивно.
Подключается устройство к сети переменного тока напряжением 220 В частотой 50 Гц с помощью электрического соединителя X1 типа «вилка». Включение и выключение нагрузки обеспечивается переключателем S1. На входе устройства установлен плавкий предохранитель F1, защищающий входные цепи устройства от перегрузок и коротких замыканий при неправильном монтаже. Включение устройства в сеть переменного тока контролируется индикаторной лампой HI тлеющего разряда, которая разгорается сразу же после включения. Кроме этого, на входе устройства собран фильтр, защищающий от высокочастотных помех, которые проникают в сеть питания устройства.
При изготовлении устройства защиты ламп накаливания Н2 и НЗ использованы следующие комплектующие: тиристор VS1 типа КУ202К; выпрямительные диоды VD1-4 типа КДЮ5Б; индикаторная лампочка H1 типа ТН-0,2-1; лампы накаливания Н2, НЗ типа 60Вт-220-240В; конденсаторы С1-2 типа МБМ-П-400В-0,1 мкФ, СЗ - K50-3-10B-20 мкФ; резисторы R1 типа ВСа-2-220 кОм, R2 - ВСа-2-10 Ом, R3 - ММТ-9, R4 - проволочный самодельный с сопротивлением 200 Ом или типа C5-35-3BT-200 Ом; электромагнитное реле К1 типа РЭС-42 (паспорт РС4.569.151); электрический.соединитель X1 типа «вилка» с электрическим кабелем; переключатель S1 типа П1Т-1-1.
При сборке и ремонте устройства могут быть применены другие комплектующие. Резисторы типа ВСа можно заменить на резисторы типов МЛТ, МТ, С1-4, УЛИ; конденсаторы типа МБМ - на К40У-9, МБГО, К42У-2, конденсатор типа К50-3 - на К50-6, К50-12, К50-16; электромагнитное реле типа РЭС-42 - на реле типов РЭС-9 (паспорт РС4.524.200), РВМ-2С-110, РПС-20 (паспорт РС4.521.757); тиристор типа КУ202К - на КУ202Л, КУ202М, КУ201К, КУ201Л; терморезистор любой серии.
Для регулировки и налаживания устройства защиты ламп накаливания потребуется ИП и автотрансформатор, позволяющий увеличить напряжение питания переменного тока до 260 В. Напряжение подается на вход устройства X1, и измеряют его в точках А и Б, выставив автотрансформатором напряжение на лампах накаливания равным 200 В. Вместо постоянного резистора R2 устанавливают проволочный переменный резистор типа ППЗ-ЗВт-20 Ом. Плавно увеличивая сопротивление резистора R2 отмечают момент срабатывания реле K1. Перед проведением этой регулировки терморезистор R3 шунтируется короткозамкнутой перемычкой.
После проверки напряжения на лампах накаливания при временно замкнутых резисторах R2 и R3 снимают перемычки, устанавливают на место резистор R2 с соответствующим сопротивлением, проверяют время задержки срабатывания электромагнитного реле, которое должно быть в пределах 1,5-2 с. Если время срабатывания реле значительно больше, то сопротивление резистора R2 необходимо увеличить на несколько Ом.
Надо отметить, что это устройство имеет существенный недостаток: включение и выключение его может производиться только после того, как терморезистор R3 полностью остыл после нагревания и подготовлен к новому циклу включения. Время охлаждения терморезистора равно 100-120 с. Если терморезистор еще не охладился, то устройство сработает с задержкой только за счет включенного в схему резистора R4.

5.2. Простые терморегуляторы в блоках питания
Сначала - терморегулятор. При выборе схемы учитывались такие факторы, как ее простота, доступность необходимых для сборки элементов (радиодеталей), особенно применяемых в качестве термодатчиков, технологичность сборки и установки в корпус БП.
По этим критериям наиболее удачной оказалась схема В.Портунова. Она позволяет уменьшить износ вентилятора и снизить уровень шума, создаваемого им. Схема этого автоматического регулятора частоты вращения вентилятора показана на рис. . Датчиком температуры служат диоды VD1- VD4, включенные в обратном направлении в цепь базы составного транзистора VT1, VT2. Выбор в качестве датчика диодов обусловила зависимость их обратного тока от температуры, которая имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания. Немаловажную роль сыграла распространенность диодов и их доступность для радиолюбителей.


Резистор R1 исключает возможность выхода из строя транзисторов VTI, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.
Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1,VT2. Если при указанном нa схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить. Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой. Естественно, если при четырех диодах датчика частота вращения слишком высокая, число диодов следует уменьшить.

Устройство монтируют в корпусе блока питания . Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 c припаянными к его выводам резисторами R1, R2 и транзистором VT1 (рис.2) устанавливают выводом эмиттера в отверстие «+12 В вентилятора» платы БП (раньше туда подключался красный провод от вентилятора). Налаживание устройства сводится к подбору резистора R2 спустя 2.. 3 мин после включения ПК и прогрева транзисторов БП. Временно заменив R2 переменным (100-150 кОм) подбирают такое сопротивление, чтобы при номинальной нагрузке теплоотводы транзисторов блока питания нагревались не более 40ºС.
Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) "измерять" температуру на ощупь можно, только выключив компьютер.
Простую и надежную схему предложил И. Лаврушов. Принцип ее работы тот же, что и в предыдущей схеме, однако в качестве датчика температуры применен терморезистор NTC (номинал 10 кОм некритичен). Транзистор в схеме выбран типа КТ503. Как определено опытным путем его работа является более устойчивой, чем других типов транзисторов. Подстроечный резистор желательно применить многооборотный, что позволит точнее настроить температурный порог срабатывания транзистора и, соответственно, частоту вращения вентилятора. Терморезистор приклеивается к диодной сборке 12 В. При отсутствии его можно заменить двумя диодами. Более мощные вентиляторы с током потребления больше 100 мА следует подключать через схему составного транзистора (второй транзистор КТ815).


Схемы двух других, относительно простых и недорогих регуляторов частоты вращения вентиляторов охлаждения БП, часто приводятся в интернете (CQHAM.ru). Их особенность в том, что в качестве порогового элемента применяется интегральный стабилизатор TL431. Довольно просто «добыть» эту микросхему можно при разборке старых БП ПК АТХ.
Автор первой схемы Иван Шор. При повторении выявилась целесообразность в качестве подстроечного резистора R1 применять многооборотный того же номинала. Терморезистор крепится на радиатор охлаждаемой диодной сборки (или на ее корпус) через термопасту КПТ-80.


Подобная схема, но на двух включенных параллельно КТ503 (вместо одного КТ815) на рис.5. При указанных номиналах деталей на вентилятор поступает 7В, повышаясь при нагреве терморезистора. Транзисторы КТ503 можно заменить на импортные 2SC945, все резисторы мощностью 0,25Вт.


Более сложная схема регулятора частоты вращения вентилятора охлаждения с успехом применяется в другом БП. В отличие от прототипа в ней применены «телевизионные» транзисторы. Роль радиатора регулируемого транзистора Т2 на ней выполняет свободный участок фольги, оставленный на лицевой стороне платы. Эта схема позволяет, кроме автоматического увеличения частоты вращения вентилятора при нагреве радиатора охлаждаемых транзисторов БП или диодной сборки, устанавливать минимальную пороговую частоту вращения вручную, вплоть до максимума.

5.3. Электронный термометр с точностью не менее 0,1 °С.
Его легко собрать самому по схеме, приведенной ниже. По сравнению с ртутным термометром электрический намного безопаснее, кроме того, если применить неинерционный терморезистор типа СТЗ-19, время измерения составляет всего 3 с.


Основу схемы составляет мост постоянного тока R4, R5, R6, R8. Изменение величины сопротивления терморезистора приводит к разбалансу моста. Напряжение разбаланса сравнивается с опорным напряжением, снимаемым с делителя-потенциометра R2. Ток, протекающий через R3, РА1, прямо пропорционален разбалансу моста, а значит и измеряемой температуре. Транзисторы VТ1 и VТ2 используются в качестве низковольтных стабилитронов. Их можно заменить на КТ3102 с любым буквенным индексом. Настройку прибора начинают с измерения сопротивления терморезистора при фиксированной температуре 20°С. После измерения R8 из двух резисторов R6 + R7 необходимо с высокой точностью подобреть такой же номинал сопротивления. После этого потенциометры R2 и R3 устанавливаются 1з среднее положение. Для калибровки термометра можно воспользоваться следующей методикой. В качестве источника образцовой температуры используется емкость с подогретой водой (лучше выбирать температуру ближе к верхнему пределу измерения), температуру которой контролируют образцовым термометром.
После включения питания выполняем следующие операции:
а) переводим переключатель S2 в положение "КАЛИБРОВКА" и резистором R8 устанавливаем стрелку на нулевую отметку шкалы;
б) помещаем терморезистор в емкость с водой, температура которой должна быть в пределах измеряемого диапазона;
в) устанавливаем переключатель в положение "ИЗМЕРЕНИЕ" и резистором R3 устанавливаем стрелку прибора на значение шкалы, которое будет равно измеряемой величине в соответствии с показаниями образцового термометра.
Операции а), б), в) повторяют несколько раз, после чего настройку можно считать законченной.

5.4. Приставка к мультиметру для измерения температуры


Простая приставка, содержащая шесть резисторов , позволяет использовать цифровой вольтметр (или мультиметр) для измерения температуры с разрешающей способностью 0,1°С и тепловой инерцией в 10...15 с. При таком быстродействии его можно применять и для измерения температуры тела. В измерительный прибор вносить изменений не требуется, а изготовление приставки доступно и начинающим радиолюбителям.
В качестве датчика применен полупроводниковый терморезистор СТЗ-19 с номинальным сопротивлением 10 кОм при t = 20°С. Вместе с дополнительным резистором R3 он образует одну половину измерительного моста. Вторая половина моста -делитель напряжения из резисторов R4 и R5. последним при калибровке устанавливают начальное значение выходного напряжения. Мультиметр используется в режиме измерения постоянного напряжения на пределах 200 или 2000 мВ. Соответствующим выбором сопротивления резистора R2 изменяют чувствительность измерительного моста.
Непосредственно перед измерением температуры переменным резистором R1 устанавливают напряжение питания измерительной цепи равным тому, при котором производилась первоначальная калибровка. Включают приставку для отсчета измеряемой температуры кнопочным выключателем SB1, а перевод из режима измерения в режим установки напряжения -переключателем SB2.
Расчет включаемого последовательно с терморезистором дополнительного резистора R3 производят по формуле R3 = Rtm(B - 2Тм)/(В + 2Тм), где RTm - сопротивление терморезистора в середине температурного диапазона; В - постоянная терморезистора; Тм -абсолютная температура в середине измерительног диапазона Т = t° + 273.
Такая величина R3 обеспечивает минимальное отклонение характеристики от линейной.
Постоянная терморезистора определяется по измерению сопротивлений RT1 и RT2 терморезистора при двух значениях температуры Т1 и Т2 и последующим вычислением по формуле B = ln(RT1/RT2)/(1/T-1/T2).
Напротив, при известных параметрах терморезистора с отрицательным ТКС его сопротивление для некоторой температуры Т можно определить по формуле Rt = R-r2oe(B/T"B^J3) , где Rt2o -сопротивление терморезистора при температуре 20°С.
Калибровку приставки производят в двух точках: Тк- = Тм+0,707(Т2-Т.)/2 и ТК2=Тм-0,707(12-10/2, где Тм = (Тт + Т2)/2, Ti и Т2 - начало и конец температурного диапазона.
В процессе первоначальной калибровки со свежим элементом питания сопротивление переменного резистора R1 устанавливают максимальным, чтобы по мере потери емкости и снижения напряжения элемента можно было сохранять напряжение на мосте неизменным (приставка потребляет ток около 8 мА). Регулированием подстроечных резисторов R2, R5 добиваются соответствия в трех знаках показаний цифрового индикатора мультиметра значениям температуры терморезистора Т«1 и Т«2, контролируемой точным термометром. При его отсутствии воспользуйтесь, например, медицинским термометром для контроля температуры в пределах его шкалы и стабильной температурой таяния льда - 0°С.
В качестве мультиметра автором использован М-830 фирмы Mastech. Резисторы R2, R5 лучше применить многооборотные (СП5-1В, СП5-14). a R1 - однооборотный, например ППБ: резисторы R3 и R4 - МЛТ-0,125. Для включения питания и переключения режима приставки можно взять кнопочные переключатели П2К без фиксации.
В изготовленной приставке были установлены границы диапазона измеряемой температуры - Т1 = 15°С: Т2 = 45°С. В случае измерений в диапазоне положительных и отрицательных значений температуры по шкале Цельсия индикация знака получается автоматически.

5.5. Термореле
Схема термореле показана на . Теплочувствительный элемент этого автомата - полупроводниковый терморезистор, сопротивление которого при понижении температуры резко увеличивается. Так при комнатной температуре (20 С) его сопротивление составляет 51 кОм, а при 5-7 С уже почти 100 кОм, то есть возрастает почти в два раза. Именно это его свойство и используется в автоматическом регуляторе температуры.


При нормальной температуре сопротивление терморезистора R1 относительно мало, и на базу транзистора VT1 подается постоянное смещение, которое удерживает его в открытом состоянии. С уменьшением температуры сопротивление терморезистора увеличивается, ток базы уменьшается, и транзистор начинает закрываться. Тогда триггер Шмидта, собранный на транзисторах VT2 и VT3, "опрокидывается" (VT2 открывается, а VT3 закрывается) и подает смещение в цепь базы транзистора Т4, в эмиттерную цепь которого включено электромагнитное реле. Транзистор VT4 открывается и включает реле К1. Подстроечным резистором R3 можно выбрать пороги срабатывания триггера и, следовательно, температуру, которую устройство будет автоматически поддерживать. Диод VD2, включенный в обратном направлении, шунтирует обмотку реле и предохраняет транзистор от пробоя при включении реле, когда в его обмотке возникает ЭДС самоиндукции. Одновременно со срабатыванием реле начинает светиться светодиод HL1, который используется в качестве индикатора работы всего устройства. Стабилитрон VD1 и резистор R9 образуют простейший параметрический стабилизатор напряжения для питания электронной схемы устройства, а конденсаторы С1 и С2 фильтруют выпрямленное диодным мостиком VD3-VD6 переменное напряжение.
Все детали для сборки устройства вы можете легко купить в магазине радиотоваров. Резисторы типа МЛТ, транзистор VT1 -МП41; VT2, VT3 и VT4 - МП26. Вместо них можно использовать любые p-n-p транзисторы, рассчитанные на напряжение не ниже 20 В. Реле K1 - типа РЭС-10 или аналогичное, срабатывающее при токе 10-15 мА с переключающими или размыкающими контактами. Если нужного вам реле подобрать не удастся, не отчаивайтесь. Заменив транзистор VT4 на более мощный, например ГТ402 или ГТ403, вы можете включить в его коллекторную цепь практически любое реле, применяющееся в транзисторной аппаратуре. Светодиод HL1 - любого типа, трансформатор T1 - ТВК-110.
Все детали, за исключением терморезистора R1, монтируются на печатной плате, которая находится в комнате вместе с электронным выключателем . Когда при понижении температуры реле срабатывает и замыкает контакты К 1.1, на управляющем электроде симистора VS1 появляется напряжение, которое его отпирает. Цепь замыкается.
Теперь о налаживании электронной схемы. Прежде чем подключать контакты реле 4 к тиристору VS1, терморегулятор необходимо испытать и настроить. Сделать это можно так.
Возьмите терморезистор, припаяйте к нему длинный провод в двухслойной изоляции и поместите в тонкую стеклянную трубочку, заклеив с обоих концов эпоксидной смолой для герметичности. Затем включите питание электронного регулятора, опустите трубочку с терморезистором в стакан со льдом и, вращая движок подстроечного резистора, добейтесь срабатывания реле.

5.6. Схема терморегулятора для стабилизации температуры нагревателя (500 Вт)


Терморегулятор, схема которого изображена ниже, предназначен для поддержания постоянной температуры воздуха в помещении, воды в сосудах, в термостатах, а также растворов в цветной фотографии. К нему можно подключать нагреватель мощностью до 500 Вт. Терморегулятор состоит из порогового устройства (на транзисторе Т1 и Т2), электронного реле (на транзисторе ТЗ и тиристоре Д10) и блока питания. Датчиком температуры служит терморезистор R5, включенный в цепь подачи напряжения на базу транзистора Т1 порогового устройства.
Если окружающая среда имеет необходимую температуру, транзистор Т1 порогового устройства закрыт, а Т2 открыт. Транзистор ТЗ и тиристор Д10 электронного реле в этом случае закрыты, и напряжение сети не поступает на нагреватель. При понижении температуры среды сопротивление терморезистора увеличивается, в результате чего напряжение на базе транзистора Т1 повышается. Когда оно достигает порога срабатывания устройства, транзистор Т1 откроется, а Т2 - закроется. Это приведет к открыванию транзистора ТЗ. Напряжение, возникающее на резисторе R9, приложено между катодом и управляющим электродом тиристора Д10 и будет достаточно для открывания его. Напряжение сети через тиристор и диоды Д6 - Д9 поступит на нагреватель.
Когда температура среды достигнет необходимой величины, терморегулятор отключит напряжение от нагревателя. Переменный резистор R11 служит для установки пределов поддерживаемой температуры.
В терморегуляторе применен терморезистор ММТ-4. Трансформатор Тр выполнен на сердечнике Ш12Х25. Обмотка I содержит 8000 витков провода ПЭВ-1 0,1, обмотка II - 170 витков провода ПЭВ-1 0,4.

5.7. ТЕРМОРЕГУЛЯТОР ДЛЯ ИНКУБАТОРА
Предложена схема простого и надежного в работе термореле для инкубатора. Отличается малым потреблением электроэнергии, выделение тепла на силовых элементах и балластном резисторе незначительно.
Предлагаю схему простого и надежного в работе термореле для инкубатора. Схема изготовлена, испытана, проверена в работе в непрерывном режиме в течение нескольких месяцев эксплуатации.
Технические данные:
Напряжение питания 220 В, 50 Гц
Коммутируемая мощность активной нагрузки до 150 Вт.
Точность поддержания температуры ±0,1 °С
Диапазон регулирования температуры от + 24 до 45°С.
Принципиальная схема устройства


На микросхеме DA1 собран компаратор. Регулировка заданной температуры производится переменным резистором R4. Термодатчик R5 подключен к схеме экранированным проводом в хлорвиниловой изоляции через фильтр C1R7 для уменьшения наводок. Можно применить двойной тонкий провод, свитый в жгут. Терморезистор необходимо поместить в тонкую полихлорвиниловую трубку.
Конденсатор С2 создает отрицательную обратную связь по переменному току. Питание схемы осуществляется через параметрический стабилизатор, выполненный на стабилитроне VD1 типа Д814А-Д. Конденсатор С3 - фильтр по питанию. Балластный резистор R9 для уменьшения рассеиваемой мощности составлен из двух последовательно соединенных резисто¬ров 22 кОм 2 Вт. С этой же целью транзисторный ключ на VT1 типа КТ605Б, КТ940А подключен не к стабилитрону, а к аноду тиристора VS1.
Выпрямительный мост собран на диодах VD2-VD5 типа КД202К,М,Р, установленных на не-большие П-образные радиаторы из алюминия толщиной 1-2 мм площадью 2-2,5 см2 Тиристор VS1 также установлен на аналогичный ра¬диатор площадью 10-12 см2
В качестве нагревателя используются осветительные лампы HL1...HL4, включенные последовательно-параллельно для увеличения срока службы и исключения аварийных ситуаций в случае перегорания нити накала одной из ламп.
Работа схемы. Когда температура термодатчика меньше заданного уровня, выставленного потенциометром R4, напряжение на выводе 6 микросхемы DA1 близко к напряжению питания. Ключ на транзисторе VT1 и тиристоре VS1 открыт, обогреватель на HL1...HL4 подключен к сети. Как только температура достигнет заданного уровня, микросхема DA1 переключится, напряжение на ее выходе станет близким к нулю, тиристорный ключ закроется, и обогреватель отключится от сети. При отключении обогревателя температура начнет понижаться, и когда она станет ниже заданного уровня, снова включатся ключ и обогреватель.
Детали и их замена. В качества DA1 можно применить К140УД7, К140УД8, К153УД2 (Прим.ред. - подойдет практически любой операционный усилитель или компаратор). Конденсаторы любого типа на соответствующее рабочее напряжение. Терморезистор R5 типа ММТ-4 (или другой с отрицательным ТКС). Его номинал может быть от 10 до 50 кОм. При этом номинал R4 должен быть таким же.

Устройство, выполненное из исправных деталей, начинает работать сразу.
При испытании и работе следует соблюдать правила техники безопасности, так как устройство имеет гальваническую связь с сетью.

5.8. ТЕРМОСТАТ
Термостат предназначен для поддержания температуры в интервале 25-45°С с точностью не хуже 0,05С. При очевидной простоте схемы этот термостат обладает несомненным преимуществом перед аналогичными: в схеме нет элементов, работающих в ключевом режиме. Таким образом, удалось избежать импульсных помех, возникающих при коммутации нагрузки со значительным током потребления.


Нагревательными элементами являются проволочные резисторы (10 Ом, 10 Вт) и регулирующий транзистор П217В (может быть заменен любым современным кремниевым транзистором структуры р-п-р). Холодильником - радиатор. Терморезистор (ММТ-4 3,3 Ком) припаян к медному стаканчику, в который вставляется термостатируемая баночка. Вокруг стаканчика необходимо намотать несколько слоев термоизоляции и сделать термоизолирующую крышечку над баночкой.
Питание схемы осуществляется от стабилизированного лабораторного блока питания. При включении схемы начинается нагрев, о чем сигнализирует красный светодиод. По достижении заданной температуры яркость свечения красного светодиода уменьшается и начинает светиться зеленый. После окончания процесса «выбегания» температуры, оба светодиода светятся в полнакала – температура стабилизировалась.
Вся схема располагается внутри П-образного алюминиевого радиатора. Таким образом, все элементы схемы оказываются так же термостатированными, что повышает точность работы устройства.

5.9. Регулятор температуры, освещенности или напряжения
Этот простой электронный регулятор в зависимости от используемого датчика может выполнять функции регулятора температуры, освещенности или напряжения. За основу взято устройство, опубликованное в статье И. Нечаева "Регуляторы температуры жала сетевых паяльников" ("Радио", 1992, № 2 - 3, с. 22). Принцип его действия отличается от аналога только тем, что порог срабатывания транзистора VT1 регулируется резистором R5.


Регулятор некритичен к номиналам примененных элементов. Он работает при напряжении стабилизации стабилитрона VD1 от 8 до 15 В. Сопротивление терморезистора R4 - в пределах от 4,7 до 47 кОм, переменного резистора R5 - от 9,1 до 91 кОм. Транзисторы VT1, VT2 любые маломощные кремниевые структуры р-п-р и п-р-п соответственно, например, серий КТ361 и КТ315 с любым буквенным индексом. Конденсатор С1 может иметь емкость 0.22...1 мкф, а С2 - 0,5...1 мкф. Последний должен быть рассчитан на рабочее напряжение не менее 400 В.
Правильно собранное устройство в налаживании не нуждается. Чтобы оно выполняло функции регулятора освещенности, терморезистор R4 необходимо заменить на фоторезистор или фотодиод, соединенный последовательно с резистором, номинал которого подбирается экспериментально.
Авторский вариант описанной здесь конструкции используется для регулирования температуры в домашнем инкубаторе, поэтому для повышения надежности при открытом тринисторе VS1 подключенные к нагрузке осветительные лампы (четыре параллельно включенных лампы мощностью 60 Вт на напряжение 220 В) горят в полнакала. Эксплуатируя устройство в режиме регулятора освещенности, к точкам А-В следует подключить мостовой выпрямитель VD2- VD5. Его диоды подбирают в зависимости от регулируемой мощности.
При работе с регулятором важно соблюдать меры электробезопасности: его необходимо поместить в пластмассовый корпус, ручку резистора R5 выполнить из изоляционного материала и обеспечить хорошую электроизоляцию терморезистора R4.

5.10. Питание лампы дневного света постоянным током
В этих устройствах пары контактов разъема каждой нити накала можно соединить вместе и подключить к «своей» цепи - тогда в светильнике будет работать даже лампа с перегоревшими нитями.


Схема варианта устройства, рассчитанного на питание люминесцентной лампы мощностью 40 Вт и более, приведена на рис. . Здесь мостовой выпрямитель выполнен на диодах VD1-VD4. А «пусковые» конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой - СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.
Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.


Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис. . При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов - этому способствуют диоды VD1,VD2.
Дополнив обычный светильник с лампой накаливания данным устройством с люминесцентной лампой, можно улучшить общее или местное освещение. Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или 100 Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью 200 или 250 Вт. В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.

На этом я заканчиваю обзор ТЕРМОРЕЗИСТОРОВ.
Несколько слов ещё об одном радиокомпоненте – варисторе .
Я не планирую делать о нём отдельную статью, поэтому - коротко:
ВАРИСТОР – это также полупроводниковый резистор, сопротивление которого зависит от приложенного напряжения. Причём, при увеличении напряжения сопротивление варистора уменьшается. Всё элементарно. Чем больше напряжённость внешнего электрического поля, тем больше электронов «срывает» оно с оболочек атома, тем больше образуется дырок – количество свободных носителей заряда возрастает, проводимость – тоже, а сопротивление уменьшается. Это в том случае, если полупроводник чистый. На практике всё гораздо сложнее. Тирит, вилит, лэтин, силит - полупроводниковые материалы на основе карбида кремния. Оксид цинка - новый материал для варисторов. Как видим, чистых полупроводников здесь нет.


Варистор обладает свойством резко уменьшать свое сопротивление с единиц ГОм (ГигаОм) до десятков Ом при увеличении приложенного к нему напряжения выше пороговой величины. При дальнейшем увеличении напряжения сопротивление уменьшается ещё сильнее. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений .


На этом знакомство с семейством резисторов можно считать законченным.

НАЗАД на страницу РАДИОкомпоненты