Контроллер разряда аккумулятора 3.7 v схема. Простой индикатор разряда Li-ion аккумуляторов. Особенности и сферы применения бтиз

if (window.ab == true) { document.write("
Немец­кий бук­ри­дер TOLINO SHINE на плат­фор­ме And­roid всего за 3900 рублей.
Доставка по России - бесплатно!
"); }

Вот как выглядит плата контроллера заряда, извлеченная из аккумулятора NOKIA BL-6Q и ее электрическая схема.




Давайте разберемся как это работает. Аккумулятор подключается к двум контактным площадкам, расположенным по бокам контроллера (B- и B+). На печатной плате расположены две микросхемы - TPCS8210 и HY2110CB.

Задачей контроллера является поддержание напряжения на аккумуляторной батарее в пределах 4,3 - 2,4 вольт для ее защиты от перезаряда и переразряда. В режиме нормального разряда (или заряда) микросхема HY2110CB выдает на выводы OD и OS напряжение высокого уровня, которое немного меньше напряжения на батарее.

Это напряжение держит постоянно открытыми полевые транзисторы микросхемы TPCS8210, через которые батарея подсоединяется к нагрузке (Вашему устройству).

При разряде аккумулятора, как только напряжение на аккумуляторе станет меньше 2,4 вольта, сработает детектор переразряда микросхемы HY2110CB и на выход OD перестанет выдаваться напряжение. Верхний (по схеме) транзистор микросхемы TPCS8210 закроется и таким образом батарея отключится от нагрузки.

При зарядке аккумулятора, как только напряжение на аккумуляторе достигнет 4,3 вольта, сработает детектор перезаряда микросхемы HY2110CB и на выход OС перестанет выдаваться напряжение. Нижний (по схеме) транзистор микросхемы TPCS8210 закроется и батарея также отключится от нагрузки.

Альтернативный способ замены

Как видно из схемы ни у одной из микросхем нет никакого вывода для передачи информации о состоянии батареи в Ваше устройство. Выход контроллера "К" просто подсоединен через резистор определенного номинала к отрицательному выводу батареи. Следовательно никакой "секретной" информации от контроллера батареи не поступает. В некоторых моделях контроллеров вместо постоянного резистора устанавливают терморезистор для контроля температуры батареи.

По номиналу этого резистора Ваше устройство может определить тип аккумулятора, или выключиться при несоответствии этого номинала нужным значениям.

Значит для замены такого аккумулятора на аккумулятор другого производителя не обязательно менять контроллер заряда, достаточно просто замерить резистор, стоящий между выводами "-" и "К" и подключить вывод "К" устройства к минусу батареи через внешний резистор того же номинала.

Документацию на используемую в контроллере микросхему HY2110CB можно скачать , а на микросхему TPCS8210 - .



Рассмотрим, на примере электронной книги LBOOK V5, как наиболее точно сделать аналог батареи с использованием знаний об устройстве контроллера заряда. Все работы проводим в следующей последовательности:

  • Находим аккумулятор от сотового телефона, ближайший к родному по габаритам и емкости. В нашем случае это NOKIA BL-4U. (Справа на рисунке)
  • Откусываем провод от родного аккумулятора с таким расчетом, чтобы оставшейся части на разъеме хватило для припайки нового аккумулятора, а оставшейся части на старой батарее хватило для зачистки проводников и измерения тестером.
  • Берем любой цифровой тестер и устанавливаем на нем режим измерения сопротивления, предел измерения - 200 Ком. Подключаем его к отрицательному выводу и выводу контроллера родной батареи. Измеряем сопротивление.
  • Отключаем прибор. Ищем ближайший по номиналу резистор. В нашем случае - это 62 Ком.
  • Припаиваем резистор между отрицательным выводом новой батареи и проводом выхода контроллера на разъеме. (Желтый провод на рисунке).
  • Припаиваем выводы разъема "+" и "-" соответственно к плюсовому и минусовому выводу новой батареи. (Красный и черный провода на рисунке).
if (window.ab == true) { document.write("

Контроллеры сами по себе устройства полезные. И чтобы лучше разобрать эту тему, необходимо работать с определённым примером. Поэтому мы и рассмотрим контролер заряда аккумулятора. Что он собой представляет? Как устроен? Какие особенности работы существуют?

Чем занимается контроллер заряда аккумулятора

Он служит для того, чтобы следить за восстановлением энергетических потерь и тратами. Сначала он занимается отслеживанием превращения электрической энергии в химическую, чтобы в последующем при наличии надобности было снабжение требуемых схем или приборов. Сделать контроллер заряда аккумулятора своими руками не сложно. Но его также можно извлечь из источников питания, которые вышли из строя.

Как устроен контроллер

Конечно, универсальной схемы не существует. Но многие в своей работе используют два посдтроечных резистора, которые регулируют верхний и нижний предел напряжения. Когда оно выходит за заданные рамки, то начинается взаимодействие с обмотками реле, и оно включается. Пока оно работает, напряжение не опустится ниже определённого, технически заранее предусмотренного уровня. Тут следует поговорить о том, что существует различный диапазон границ. Так, для аккумулятора может быть установлено и три, и пять, и двенадцать, и пятнадцать вольт. Теоретически всё упирается в аппаратную реализацию. Давайте рассмотрим, как работает контроллер заряда аккумулятора в разных случаях.

Какие бывают типы

Следует отметить значительное разнообразие, которым могут похвастаться контроллеры заряда аккумулятора. Если говорить о их видах, давайте сделаем классификацию в зависимости от сферы применения:

  1. Для возобновляемых источников энергии.
  2. Для бытовой техники.
  3. Для мобильных устройств.

Конечно, самих видов значительно больше. Но поскольку мы рассматриваем контроллер заряда аккумулятора с общей точки зрения, то нам хватит и их. Если говорить про те, что применяются для и ветряков, то в них верхний предел напряжения обычно равняется 15 вольтам, тогда как нижний - 12 В. При этом аккумулятор может генерировать в стандартном режиме 12 В. Источник энергии подключают к нему с использованием нормально замкнутых контактов реле. Что будет, когда напряжение аккумулятора превышает установленные 15 В? В таких случаях контроллером осуществляется замыкание контактов реле. В результате источник электроэнергии с аккумулятора переключается на нагрузочный балласт. Следует отметить, что его не особенно любят ставить для солнечных панелей из-за определённых побочных эффектов. А вот для они являются обязательными. Бытовая техника и мобильные устройства имеют свои особенности. Причем контроллер заряда аккумулятора планшета, сенсорного и кнопочного сотового телефонов являются практически идентичными.

Заглянем в литиево-ионный аккумулятор сотового телефона

Если расковырять любую батарею, то можно заметить, что к выводам ячейки припаивается маленькая Она называется схемой защиты. Дело в том, что требуют наличия постоянного контроля. Обычная схема контроллера представляет собой миниатюрную плату, на которой базируется схема, сделанная из SMD-компонентов. Она в свою очередь делится на две микросхемы - одна из них является управляющей, а другая - исполнительной. Давайте поговорим более детально о второй.

Исполнительная схема

Она базируется на Обычно их два. Сама же микросхема может иметь 6 или 8 выводов. Для раздельного контроля заряда и разряда ячейки аккумулятора используют два полевых транзистора, которые находятся в одном корпусе. Так, один из них может подключать или отключать нагрузку. Второй транзистор делает эти же действия, но уже с источником питания (в качестве которого выступает зарядное устройство). Благодаря такой схеме реализации можно без проблем влиять на работу аккумулятора. При желании ею можно воспользоваться и в другом месте. Но следует учитывать, что схема контроллера заряда аккумулятора и он сам может применяться только к устройствам и элементам, что обладают ограниченным диапазоном работы. Более детально о таких особенностях мы сейчас и поговорим.

Защита от перезаряда

Дело в том, что если напряжение превысит 4,2, то может возникнуть перегрев и даже произойти взрыв. Для этого подбираются такие элементы микросхем, которые будут прекращать заряд при достижении данного показателя. И обычно, пока напряжение не достигнет показателя в 4-4,1 В из-за использования или в процессе саморазряда, дальнейшая зарядка будет невозможной. Это важная функция, которая возложена на контроллер заряда литиевых аккумуляторов.

Защита от переразряда

Когда напряжение достигает критически малых значений, которые делают проблемным само функционирование устройства (обычно это диапазон в 2,3-2,5В), то выключается соответствующий MOSFET-транзистор, который отвечает за подачу тока мобильнику. Далее происходит переход в режим сна с минимальным потреблением. И тут имеется довольно интересный аспект работы. Так, пока напряжение ячейки аккумулятора не станет больше 2,9-3,1 В, мобильное устройство не получится включить для работы в обычно режиме. Наверное, такое вы могли замечать, что когда подключаешь телефон, он показывает, что идёт зарядка, но сам включаться и функционировать в обычном режиме не хочет.

Заключение

Как видите, контроллер заряда Li-Ion-аккумулятора играет важную роль в обеспечении длительности работоспособности мобильных устройств и позитивно сказывается на сроке их службы. Благодаря простоте производства их можно найти практически в любом телефоне или планшете. Если будет желание собственными глазами увидеть, а руками потрогать контроллер заряда Li-Ion-аккумулятора и его содержимое, то при разборе следует помнить, что работа ведётся с химическим элементомв, поэтому следует соблюдать определённую осторожность.

В статье «Ремонт и модернизация светодиодных фонарей» подробно рассмотрен вопрос ремонта и доработки электрических схем китайских светодиодных фонарей, замены вышедшего из строя кислотного аккумулятора аналогом.

Но есть еще один вариант замены аккумулятора при ремонте фонаря – замена его литий-ионным аккумулятором от неисправных электронных устройств. Например, сотового телефона, фотоаппарата, ноутбука или шуруповерта. Подойдут также аккумуляторы, которые уже не обеспечивают необходимую продолжительность работы устройства, но еще работоспособны.

Первый литий-ионный аккумулятор был выпущен в 1991 году японской корпорацией Sony. Номинальное напряжение одного элемента аккумулятора составляет 3,7 В. Минимально-допустимое – 2,75 В. Напряжение заряда не должно превышать 4,2 В при токе заряда от 0,1 до 1 емкости аккумулятора (С). Литий-ионные аккумуляторы практически не обладают эффектом памяти и имеют малый ток саморазряда, при комнатной температуре не более 20% за год. На текущий момент по техническим характеристикам являются самыми лучшими.


Ранее мне пришлось ремонтировать и модернизировать LED фонарь , в котором перегорели все светодиоды. После ремонта через несколько лет работы он перестал светить по причине выхода из строя свинцового аккумулятора. Как видно на фотографии корпус его вздулся.

Так фонарь и пылился на полке, пока не вышел из строя литий-ионный аккумулятор от фотоаппарата. Анализ показал, что в аккумуляторе отказал контроллер балансировки и заряда. Два элемента аккумулятора были в хорошем техническом состоянии, которые я и решил установить в фонарь вместо кислотного аккумулятора.

Штатное зарядное устройство фонаря для зарядки литий-ионного аккумулятора не подходило, так как оно обеспечивало постоянство тока заряда с неконтролируемым напряжением. А для литий-ионного аккумулятора при зарядке необходимо обеспечить ток зарядки величиной 0,1-1С при напряжении, не превышающем 4,2 В на один элемент.

Выбор контроллера
для зарядки литий-ионного аккумулятора

Можно изготовить контроллер самостоятельно, но в продаже, например, на Алиэкспресс, продаются готовые по цене 0,2-0,3 цента, собранные на микросхеме TP4056 или ее аналогах (ACE4054, BL4054, CX9058, CYT5026, EC49016, MCP73831, LTC4054, LC6000, LP4054, LN5060, TP4054, SGM4054, U4054, WPM4054, IT4504, PT6102, PT6181, Y1880, VS6102, HX6001, Q7051).


На Алиэкспресс был куплен самый простой модуль контроллера, технические характеристики которого полностью удовлетворяют требованиям для зарядки литий-ионного аккумулятора, установленного в фонаре. Его внешний вид представлен на фотографии.


Контроллер собран по приведенной выше электрической схеме. Изменяя номинал резистора, идущего со второго вывода микросхемы на общий провод можно ограничить максимальный ток зарядки.

Выбор величины тока зарядки Li-ion аккумулятора определяется исходя из двух ограничений. Величина тока должна находиться в пределах 0,1-1 от емкости аккумулятора (принято обозначать буквой С). Например, для аккумулятора емкостью 600 мА×час ток не должен превышать 0,6 А. Следовательно, нужно, чтобы номинал токозадающего резистора составил 2 кОм (на резисторе должна стоять маркировка 202). И не превышать величины тока, который способно обеспечить зарядное устройство. Для данного случая ток должен быть более 0,6 А. Ток всегда указывается на этикетке ЗУ.

Технические характеристики контроллера TP4056
Наименование Значение Примечание
Входное напряжение, В 4,5-8,0 Более 5,5 В не рекомендуется
Выходное напряжение, В 4,2
Максимальный ток заряда, А 1,0 Можно изменять величиной R с вывода 2
Минимальный ток заряда, А 0,03 При меньшем токе уйдет в сон
Автоотключение есть При токе зарядки
Индикатор работы есть Красный-заряд, синий-заряжен
Мониторинг напряжения, В 4,0 Если ниже, то включается зарядка
Защита от переполюсовки нет Переполюсовка аккумулятора недопустима
Входной разъем Micro-USB Есть контакты для пайки
Выходной разъем нет Есть контакты для пайки
Габаритные размеры, мм 19×27
Вес модуля, гр 1,9

Стоит заметить, что если попутать полярность подключения аккумулятора к выходу контроллера, то чип сразу пробьется и на выводы аккумулятора начинает поступать подводимое к контроллеру напряжение, что может вывести его из строя.

После зарядки Li-ion аккумулятор от контроллера отключать не обязательно. В режиме сна или когда на контроллер не подается напряжение, он аккумулятор не разряжает.

В данной схеме контроллера не задействована функция отключения при нагреве аккумулятора выше допустимой температуры. Но ее можно включить, если вывод 1 микросхемы отсоединить от общего провода и подключить к выводу датчика температуры аккумулятора (такие есть в аккумуляторах всех сотовых телефонов).


Если есть необходимость использовать контроллер, имеющий защиту от переполюсовки при подключении аккумулятора и короткого замыкания выхода, то можно применить контроллер, изображенный на фотографии.


В дополнение к микросхеме TP4056 установлена DW01A (схема защиты) и чип с двумя ключевыми полевыми транзисторами SF8205A. Время защиты составляет несколько минут при токе 3А. Остальные технические характеристики не изменились.

В фонаре аккумуляторы с контроллером соединяются с помощью пайки. Поэтому был выбран контроллер без схемы защиты, представленный в статье первым.

Установка литий-ионного аккумулятора
в LED фонарь

Прежде, чем приступать к работе нужно проверить работоспособность контроллера и аккумулятора.

На контроллер можно подавать напряжение без нагрузки. В таком случае на выходе устанавливается напряжение 4,2 В и на плате светит синий светодиод. Далее нужно проверить аккумулятор, подключив его к выходу контроллера и зарядив полностью. Во время зарядки будет светить красный светодиод, а когда аккумулятор зарядится – синий.

Целесообразно после зарядки провести ходовые испытания аккумулятора, подключить его вместо кислотного и посмотреть сколько времени просветит фонарь. У меня проработал 10 часов и продолжал светить. Больше не стал ждать, так как этого времени для моих задач вполне достаточно.

Новая электрическая схема LED фонаря

На следующем шаге разрабатывается новая электрическая принципиальная схема фонаря. Отрицательный провод является общим для всех узлов и аккумулятора. В левом положении переключателя SA1 общий его контакт соединяет аккумулятор с положительным выводом контроллера. При соединении среднего вывода с выводом 3 напряжение подается на плату узкого луча, а с выводом 4 на планку светодиодов рассеянного света.


Переключатель типа тумблер SA2 служит для выбора аккумулятора, от которого будут работать светодиоды. Так как в наличии имелось два аккумулятора, то решил в фонарь установить оба. На вопрос о допустимости параллельного включения литий-ионных аккумуляторов без специального контроллера однозначного ответа нет. Поэтому я решил пойти проверенным путем и предусмотрел возможность подключать аккумуляторы по отдельности.

Отдельное подключение каждого аккумулятора позволило не только обеспечить их работу и зарядку в оптимальных условиях, но и в процессе эксплуатации фонаря знать сколько времени он еще проработает. Зная сколько времени хватило для работы от одного аккумулятора, будет известно, сколько еще сможет просветить фонарь.

В дополнение, если выйдет из строя один из аккумуляторов, то это не приведет к потере работоспособности фонаря. Два отдельных блока светодиодов и два аккумулятора гарантируют, что вы никогда не останетесь в темноте.

Сборка фонаря на литий-ионном аккумуляторе

Теперь все подготовлено и можно приступать к модернизации фонаря – переделке его схемы для работы с литий-ионным аккумулятором.


Сначала от переключателя отпаиваются все провода и удаляется прежняя плата зарядного устройства.

В корпусе модернизируемого фонаря имелся отсек, предназначенный для короткого сетевого шнура, который закрывается откидной планкой со светодиодами рассеянного света. В него и был выведен рычаг тумблера SA2 выбора аккумулятора.

Для фиксации аккумуляторов был использован двухсторонний скотч, в виде двух полосок. Закрепить аккумуляторы можно и с помощью силикона.


Перед закреплением аккумуляторов и платы контроллера к ним были предварительно припаяны паяльником провода требуемой длины. В связи с тем, что два аккумулятора в одной половинке корпуса фонаря удобно не размещались, установил их по одному в каждой половинке корпуса. Плата контроллера к корпусу была закреплена с помощью двух винтов с гайками М2.

При припайке проводов к выводам аккумулятору нужно соблюдать осторожность, чтобы свободные концы проводов случайно не соприкоснулись и не закоротили его выводы.


На фото показан фонарь после окончания монтажа. Осталось проверить его работу узлов и собирать.

Измерять ток зарядки включением амперметра в разрыв цепи после контроллера невозможно, так как внутреннее сопротивление прибора большое и результаты измерения будут не верными. У меня в наличии имеется USB тестер, с помощью которого можно узнать напряжение, подаваемое с зарядного устройства, текущий ток заряда, время заряда и емкость энергии, которую принял аккумулятор. Тестер показал, что контроллер заряжает аккумулятор током 0,42 А. Следовательно, контроллер заряжает аккумулятор нормально.

После сборки фонаря оказалось, что его красный корпус не пропускает свет синего цвета и узнать об окончании зарядки невозможно.

Пришлось фонарь разобрать и в зоне расположения индикаторных светодиодов сделать щелевое отверстие.

Теперь, когда аккумулятор зарядился, хорошо стало видно свечение светодиода синего цвета.

О выборе литий-ионного аккумулятора для фонаря

Для модернизации фонаря подойдет любой литий-ионный аккумулятор в независимости от материала, из которого изготовлен его положительный электрод и форм-фактора (формы и геометрических размеров). Емкость аккумулятора (выражается в А×час) тоже не имеет значения, просто чем она больше, тем дольше будет светить фонарь.

Следует заметить, что если в фонарь устанавливается аккумулятор, бывший в употреблении длительное время, то его фактическая емкость, как правило, значительно меньше, чем указано на его этикетке.

Проверить целесообразность установки старого аккумулятора в фонарь можно измерив его емкость при зарядке, что потребует наличие измерительных приборов, хотя бы USB тестера. Или зарядить аккумулятор полностью, подключить его к плате светодиодов фонаря и проверить достаточность времени его работы.

В случае, если аккумулятор оказался недостаточным по емкости, то придется приобрести новый. Наиболее подходящим для фонаря является популярный Li-ion аккумулятор типа 18650.

О встроенной схеме защиты в Li-ion аккумуляторах

Встречаются литий-ионные аккумуляторы, в которые встроена плата схемы защиты (PCB - power control board) от короткого замыкания, перезаряда и глубокого разряда. Такая защита в обязательном порядке устанавливается в аккумуляторы дорогостоящей аппаратуры, например, сотовые телефоны, фотоаппараты, ноутбуки.

Плата защиты круглой формы может быть установлена и на торце пальчикового аккумулятора. В таком случае аккумулятор несколько длиннее и на его корпусе имеется надпись «Protected».


На фотографии показан вскрытый корпус аккумулятора сотового телефона. В нем имеется печатная плата схема защиты. При использовании для установки в фонарь аккумулятора от сотового телефона эта схема будет служить дополнительной защитой, поэтому, если она исправна, то ее удалять не следует.

Припаивать провода, соблюдая полярность, нужно к крайним контактам, рядом с которыми нанесена маркировка полярности.


Схема защиты, в отличии от контроллера, не ограничивает ток зарядки, а только защищает аккумулятор. В этом и заключается отличие этих узлов.

Как восстановить Li-ion аккумулятор
после глубокого разряда

Если Li-ion аккумулятор быстро заряжается и разряжается, то значит он исчерпал свой ресурс и восстановлению не подлежит.

Если в аккумуляторе нет схемы защиты и напряжение на его выводах равно нулю, то аккумулятор тоже восстановлению не подлежит.

Если в аккумулятор встроена схема защиты и он не принимает заряд, а напряжение на его выводах равно нулю, то его можно попробовать восстановить.

Причина такого поведения может быть глубокий разряд в результате длительного хранения аккумулятора в разряженном состоянии. Если напряжение на выводах банки становится меньше 2,8 В, то система защиты расценивает это как внутреннее короткое замыкание и для безопасности блокирует возможность его зарядки.


Чтобы разобраться в причине, нужно вольтметром измерять напряжение на выводах аккумулятора. Если величина менее 2,8 В, то подать с контроллера, соблюдая полярность, напряжение 4,2 В непосредственно на выводы аккумулятора. Схему защиты от аккумулятора отключать не нужно, для нее это безопасно.

Если ток зарядки пошел, то нужно, минут через десять, отключить контроллер от аккумулятора и опять измерять напряжение на его выводах. Если оно стало более 2,8 В, то попробовать зарядку через схему защиты. В случае, если напряжение близко к нулю и не увеличивается, то аккумулятор неисправен и дальнейшей эксплуатации не подлежит. Если напряжение увеличилось, но не достигло 2,8 В, то продолжить зарядку на прямую.

Если через схему защиты аккумулятор стал заряжаться, значит она исправна. В противном случае схему нужно удалить. Для применения аккумулятора для фонаря схема защиты не обязательна.

Таким несложным способом можно протестировать LI-ion аккумулятор и в случае возможности, восстановить его работоспособность.

Заключение

Замена кислотного аккумулятора в светодиодном фонаре литий-ионным позволяет решить главный вопрос – работоспособность фонаря в течении длительного времени при редком его использовании, так как саморазряд аккумулятора не превышает 2% его емкости в месяц.

В дополнение, при наличии литий-ионного аккумулятора от любого вышедшего из строя электронного устройства, можно сэкономить и фонарь станет на много легче.

В состав портативных устройств в обязательном порядке входит аккумулятор, обычно для этих целей используется литиево-ионная батарея. Несмотря на то, что функциональные особенности современной электроники постоянно совершенствуются, сам аккумулятор практически остается неизменным.

Емкость и функциональные особенности АКБ значительно выросли, но общий принцип работы остался тем же. Аккумулятор может значительно перегреваться при зарядке и выходить из строя. При переразряде напряжение может опуститься ниже критического уровня, что приведет к деградации элемента, и новая дозарядка станет невозможной. Потому для управления над процессом зарядки батареи используются электронные схемы, получившие название контроллеров.

Это оборудование используется в схемах мобильных телефонов, ноутбуков и другого переносного электронного оборудования. Контроллер аккумулятора необходим для солнечных и ветряных батарей. Его включают в состав источников бесперебойного питания и другой техники.

Алгоритм процесса заряда аккумулятора

Для того чтобы понять, как происходит заряд батареи, рассмотрим схему, в состав которой входят только резистор и сам аккумулятор.

В нашем случае используется аккумулятор 18650, емкость которого составляет 2400 мА/ч, с пороговыми значениями напряжения 2,8-4,3 В, и блок питания на 5 вольт и максимальный ток в 1 А. Рассчитаем параметры необходимого резистора. При этом будем считать, что аккумулятор находится в нормальном состоянии, а не полностью разряжен. Проведем зарядку батареи. Сначала, когда напряжение на АКБ минимально, ток будет максимален, а Ur – падение напряжение на резисторе, должно составить 2,2 Вольта (это разница между Uип – напряжением блока питания 5 В и начальными показателями батареи).

Исходя из этих данных, рассчитываем R – начальное сопротивление на резисторе и Pr – мощность рассеивания:

R= Ur/I = 2.2/1 = 2.2 Ом, где I – это максимальный ток блока питания.

Pr=I2R =1х1х2.2 = 2.2 Вт.

Когда напряжение в аккумуляторе дойдет до 4,2 В, Iзар – ток заряда, составит:

Iзар=(Uи -4.2)/R=(5-4.2)/2.2 = 0.3 А.

Получается, что для зарядки нам понадобится резистор, который работает при данных показателях. Но в этой схеме все время придется проверять напряжение на аккумуляторе, чтобы не пропустить момент, когда оно достигнет максимального значения в 4,2 В.

Важно! Теоретически зарядить аккумулятор без отдельной схемы защиты возможно, но проследить при этом за напряжением и зарядным током не получится. Да, 1-2 раза такой вариант может быть использован, но гарантировать, что батарея при этом не выйдет из строя, нельзя.

Основные функции контроллеров

Существуют три главные задачи, которые выполняют контроллеры заряда:

  • оптимизация системы питания;
  • сохранение ресурсов;
  • избежание фатальных поломок.

Контроллеры обладают разными функциями. Они корректирует подачу тока, следя за тем, чтобы показатели были меньше максимального заряда, но при этом превышали ток саморазряда. Устройства следят за прохождением всех этапов разряда-заряда аккумулятора, исходя из строения и химического состава АКБ.

Если речь идет о батареи для ноутбука, то контроллер дополнительно компенсирует энергетические потоки, которые возникают при одновременной зарядке и работе ПК. Иногда устройства оборудуются термодатчиками для аварийного отключения при перегреве или на холоде.

Если в системе используются сразу несколько аккумуляторов, контроллер обеспечивает заряд только для тех банок, которые еще не зарядились.

Для исключения утечек газа и взрыва в некоторых моделях контроллеров заряда аккумулятора используются датчики давления.

Обратите внимание! Работа любого контроллера должна обеспечивать правильное соотношение постоянный ток/постоянное напряжение (CC/CV). Если при заряде количество поставляемой энергии избыточно, то эта лишняя часть выделяется на контроллере в виде тепла. Поэтому сам контроллер никогда не встраивается в батарею, он включается в общую схему, но всегда располагается отдельно. Но как сделать устройство своими руками?

Простые схемы

Одним из самых распространенных контроллеров является вариант на микросхеме на DW01. Его используют в большинстве мобильных устройств. По виду этот элемент представляет собой электронную плату, на которую монтируются все необходимые компоненты.

DW01 имеет 6 выходов, а полевые транзисторы смонтированы в одном корпусе с 8 выходами – это микросхема 8205А.

В данной схеме задача контроллера заряда отключить АКБ либо при полном разряде, либо при полной зарядке, то есть достижении значения в 4,25 В. Вместо DW01 можно использовать NE57600, G2J, G3J, S8261, S8210, K091, JW01, JW11 и другие аналогичные микросхемы.

В микросхему LC05111CMT уже входят полевые транзисторы, здесь дополнительно используются только конденсатор и резисторы. В схеме используются встроенные транзисторы с переходным сопротивлением в 0,011 Ом. Это простая схема для создания аккумулятора своими руками. Между выводами S1 и S2 максимальное сопротивление составляет 24 В, а максимальные ток заряда/разряда – 10А.

Все сделанные самостоятельно устройства должны отвечать заданным параметрам, иначе обеспечить правильную работу аккумулятора не получится.

Видео

Как же плотно вошли в нашу жизнь Li-ion аккумуляторы. То, что они применяются почти во все микропроцессорной электронике это уже норма. Так и радиолюбители уже давно взяли их себе на вооружение и используют в своих самоделках. Способствую этому значительные плюсы Li-ion аккумуляторов, такие как небольшой размер, большая емкость, большой выбор исполнений различных ёмкостей и форм.

Самый распространенный аккумулятор имеет марку 18650 его напряжение составляет 3,7 В. Для которого я у буду делать индикатор разряда.
Наверное, не стоит рассказывать, как вредна для аккумуляторов кране низкая их разрядка. Причем для аккумуляторов всех разновидностей. Правильная эксплуатация аккумуляторных батарей продлит их жизнь в несколько раз и сэкономит ваши деньги.

Схема индикатора зарядки


Схема довольно универсально и может работать в диапазоне 3-15 вольт. Порог срабатывания можно настроить переменным резистором. Так что устройство можно использовать почти для любых аккумуляторов, будь то кислотные, никелево-кадмиевые (nicd) или литий-ионные (Li-ion).
Схема отслеживает напряжение и как только оно упадет ниже заданного уровня – загорится светодиод, сигнализируя о низкой разрядке батареи.
В схеме используется регулируемый (ссылка где брал). Вообще этот стабилитрон является очень интересным радиоэлементом, который может существенно облегчить жизнь радиолюбителям, при построении схем, завязанных на стабилизации или пороговом срабатывании. Так что берите его на вооружение, особенно при постройке блоков питания, схем стабилизации токов и т.п.
Транзистор можно заменить любым другим NPN структуры, отечественный аналог КТ315, КТ3102.
R2- регулирует яркость светодиода.
R1 – переменный резистор номиналом от 50 до 150 кОм.
Номинал R3 можно прибавить до 20-30 кОм для экономии энергии, если использован транзистор с высоким коэффициентом передачи.
Если у вас не окажется регулируемого стабилизатора TL431, то можно использовать проверенную советскую схему на двух транзисторах.


Порог срабатывания задается резисторами R2, R3. Вместо них можно запаять один переменный, чтобы дать возможность регулировки и уменьшить количество элементов. Советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).


Схему можно собрать на плате или навесным монтажом. Одеть термоусадочную трубку и обдуть термофеном. Приклеить на двухсторонний скотч к тыльной стороне корпуса. Я лично установил данную плату в шуруповерт и теперь не до вожу его аккумуляторы до критического разряда.
Так же параллельно резистору со светодиодом можно подключить зуммер (пищалку) и тогда вы точно будете знать о критических порогах.