Классификация и основные параметры электрических источников света. Светодиодные лампы: виды и технические характеристики Светодиодные лампы постоянного или переменного тока

А теперь давайте рассмотрим каждый из видов.

Лампа накаливания.

Лампа накаливания - это электрический источник света, который излучает световой поток в результате накала проводника из тугоплавкого металла (вольфрама).

Достоинства:

  • невысокая стоимость;
  • мгновенное зажигание при включении;
  • небольшие габаритные размеры;
  • широкий диапазон мощностей.

Недостатки:

  • большая яркость (негативно воздействует на зрение);
  • небольшой срок службы - до 1000 часов;
  • низкий КПД. (только десятая часть потребляемой лампой электрической энергии преобразуется в видимый световой поток) остальная энергия преобразуется в тепловую.

Технические характеристики

Лампы

накаливания

Срок службы источника света

1 000 часов

Световая эффективность

Выделение тепла при горении

Виброустойчивость

Устойчивость к перепадам

напряжения

Чувствительность к частым

включениям

Допустимая температура

окружающей среды

Перезажигание лампы

мгновенное

Пульсации излучения

мало заметные

Цветовая температура, К

Индекс цветопередачи

Специальная утилизация

не требуется

КПД светильника

Средняя стоимость

Люминесцентная лампа.

Люминесцентные лампы, называемые еще, лампами дневного света, представляют собой запаянную с обоих концов стеклянную трубку, изнутри покрытую тонким слоем люминофора.

Достоинства:

  • хорошая светоотдача и более высокий КПД (в сравнении с лампами накаливания);
  • разнообразие оттенков света;
  • рассеянный свет;
  • длительный срок службы (2?000 -20?000 часов в отличие от 1?000 у ламп накаливания), при соблюдении определенных условий.

Недостатки:

  • химическая опасность (ЛЛ содержат ртуть в количестве от 10 мг до 1 г);
  • неравномерный, неприятный для глаз, иногда вызывающий искажения цвета, освещённых предметов (существуют лампы с люминофором спектра, близкого к сплошному, но имеющие меньшую светоотдачу);
  • Со временем люминофор срабатывается, что приводит к изменению спектра, уменьшению светоотдачи и как следствие понижению КПД ЛЛ;
  • мерцание лампы с удвоенной частотой питающей сети;
  • наличие дополнительного приспособления для пуска лампы — пускорегулирующего аппарата (громоздкий дроссель с ненадёжным стартером);
  • очень низкий коэффициент мощности ламп — такие лампы являются неудачной для электросети нагрузкой (проблема решается с применением вспомогательных устройств).

Технические

характеристики

Люминесцентные

лампы

Срок службы источника

8-12 000 часов

Световая эффективность

Выделение тепла при

Виброустойчивость

Положение горения

горизонтальное

Электромагнитный шум

Допустимая температура

окружающей среды

Перезажигание лампы

мгновенное

Пульсации излучения

Цветовая температура, К

Индекс цветопередачи

Специальная утилизация

требуется

КПД светильника

Средняя стоимость

Галогенные лампы.

Галогенная лампа - это лампа накаливания, в колбу которой закачан буферный газ: пары галогенов (брома или иода). Данная особенность повышает срок службы лампы до 2000—4000 часов, а так же позволяет повысить температуру спирали.

Достоинства:

  • выпускаются в богатом ассортименте;
  • позволяют лучше управлять световым пучком и направлять eгo c большей точностью;
  • компактны.

Недостатки:

  • сильный нагрев;
  • сравнительно недолговечны, примерно 2000-4000 часов;
  • нельзя дотрагиваться к поверхности стекла лампы пальцами (перегорает).

Технические

характеристики

Галогенные

лампы

накаливания

Срок службы

источника света

2 000 часов

Световая

эффективность

Выделение тепла

при горении

Виброустойчивость

Устойчивость

к перепадам напряжения

Чувствительность

к частым включениям

Допустимая температура

окружающей среды

Перезажигание лампы

мгновенное

Пульсации излучения

мало заметные

Цветовая температура, К

Индекс цветопередачи

Специальная утилизация

не требуется

КПД светильника

Средняя стоимость

Светодиодные лампы.

В светод-иодных лампах или светильниках (в обиходе — «ледовых», от аббревиатуры LED, Light Emitting Diode) в качестве источника света используются светодиоды, данный вид светильников применяются для промышленного, бытового и уличного освещения.

Достоинства:

  • самый большой срок службы среди всех ламп (от 10 000 до 100 000 часов);
  • низкое энергопотребление;
  • устойчивость к вибрации и механическим ударам;
  • безотказная работа при различных температурах от - 60 до +60?С;
  • светодиодные лампы изготавливаются на любое напряжение, нет необходимости установки дополнительных балластных резисторов;
  • обладает "чистым цветом", что важно в световом дизайне.

Недостатки:

  • самый главный недостаток - высокая цена;
  • ограничена сфера применения, в некоторых случаях лампы накаливания нельзя заменить светодиодными.

Технические

характеристики

Светодиодные

лампы

Срок службы источника

50 000 часов

Световая эффективность

80 - 100 Лм/Вт

Выделение тепла при

Виброустойчивость

Устойчивость к перепадам

напряжения

Чувствительность к частым

включениям

Допустимая температура

окружающей среды

Перезажигание лампы

мгновенное

Пульсации излучения

Цветовая температура, К

Индекс цветопередачи

Специальная утилизация

не требуется

КПД светильника

Средняя стоимость

Металлогалогенные лампы.

Металлогалогенные лампы (МГЛ / HMI) являются одним из видов газоразрядных ламп (ГРЛ) высокого давления. От других ГРЛ отличаются тем, что для коррекции спектральной характеристики дугового разряда в парах ртути, в горелку МГЛ дозируются специальные излучающие добавки (ИД), представляющие собой галогениды некоторых металлов.

Достоинства:

  • светоотдача в 10 раз больше, чем у ламп накаливания.
  • компактный источник света
  • надежная работа при низких температурах и различных условиях эксплуатации;
  • возможность применять лампы разной цветности.

Недостатки:

  • время разгорания 30-50 секунд, после отключения не включаются пока не остынут;
  • высокая стоимость.

Технические

характеристики

Металлогалогенные
лампы

Срок службы источника

10 000 часов

Световая эффективность

Звуковой шум

Положение горения

определенное

Устойчивость к перепадам

напряжения

Чувствительность к частым

включениям

Допустимая температура

окружающей среды

Перезажигание лампы

Пульсации излучения

мало заметные

Цветовая температура, К

Индекс цветопередачи

Специальная утилизация

требуется

КПД светильника

Средняя стоимость

Дуговые ртутные люминесцентные лампы.

Лампы ДРЛ (Дуговые Ртутно Люминесцентные) имеют очень высокую световую отдачу (до 60 лм/Вт) и относятся к ртутным разрядным лампам высокого давления с исправленной цветностью. ДРЛ лампа состоит из кварцевой трубки (горелки), находящейся в стеклянной колбе, внутренняя поверхность которой покрыта тонким слоем люминофора, он в свою очередь преобразовывает ультрафиолетовое излучение, возникающее в следствии дугового разряда в трубке, в видимый свет, который может улавливать человеческий глаз.

Достоинства:

  • хорошая световая отдача (до 55 лм/Вт);
  • большой срок службы (10000 ч);
  • компактность;
  • неприхотливость к условиям окружающей среды (кроме сверхнизких температур).

Недостатки:

  • преобладание в спектре лучей сине-зеленой части, ведущее к плохой цветопередаче, что исключает применение ламп, когда объектами которые необходимо осветить, являются лица людей или окрашенные поверхности;
  • возможность работы только на переменном токе;
  • необходимость включения через балластный дроссель;
  • длительность разгорания при включении (около7 минут) и долгое начало повторного зажигания (около 10 мин).
  • пульсации светового потока, большие чем у люминесцентных ламп;
  • уменьшение светового потока к концу службы.

Технические

характеристики

Дуговые ртутные
люминесцентные лампы

Срок службы источника

до 10 000 часов

Световая эффективность

Положение горения

Звуковой шум

Электромагнитный шум

Чувствительность к частым

включениям

Допустимая температура

окружающей среды

Пульсации излучения

заметные

Цветовая температура, К

Индекс цветопередачи

Специальная утилизация

требуется

КПД светильника

Средняя стоимость

Энергосберегающие лампы.

Энергосберегающие лампы работают по тому же принципу, что и обычные люминесцентные лампы, с тем же принципом преобразования электрической энергии в световую. Зачастую термин «энергосберегающая лампа» обычно применяют к компактной люминесцентной лампе, которую можно поставить на место обычной лампы накаливания без всяких переделок.

Достоинства:

  • экономичны;
  • долгий срок службы;
  • низкая теплоотдача;
  • большая светоотдача;
  • выбор желаемого цвета.

Недостатки:

  • высокая цена;
  • экологически вредная.

Газоразрядные лампы.

Газоразрядная лампа - это источник света, излучающий энергию в видимом диапазоне. Свечение в лампе создается непосредственно или опосредованно от электрического разряда в газе, парах металла или в смеси пара и газа.

Достоинства:

  • высокий КПД;
  • длительный срок службы по сравнению с лампами накаливания;
  • экономичность;
  • высокая степень цветопередачи;
  • хорошая стабильность цвета;
  • хорошие характеристики светового потока в течение всего срока службы.

Недостатки:

  • высокая стоимость;
  • необходимость пускорегулирующей аппаратуры;
  • долгий выход на рабочий режим;
  • высокая чувствительность;
  • наличие токсичных компонентов и как следствие необходимость в инфраструктуре по сбору и утилизации;
  • невозможность работы на любом роде тока;
  • невозможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);
  • наличие мерцания и гудения при работе на переменном токе промышленной частоты;
  • прерывистый спектр излучения;
  • непривычный в быту спектр.

Неоновые лампы.

Неоновая лампа - это газоразрядная лампа, состоит из баллона, заполненного разреженным инертным газом (неоном), и укрепленных внутри баллона двух дисковых или цилиндрических электродов. В отличие от люминесцентных ламп неоновые значительно долговечнее, так как не имеют внутри нитей накаливания, создающих электронную эмиссию.

Достоинства:

  • броский световой эффект;
  • высокий срок службы (от 80000 часов);
  • возможность изготовления ламп различных форм;
  • не нагреваются, следовательно - пожаробезопасны;
  • возможность широкого выбора любого нужного оттенка белого свечения;
  • возможность управления яркостью газосветной лампы;
  • бесшумность работы.

Недостатки:

  • содержат вредные вещества;
  • требуют высокого напряжения в сети, необходимость высоковольтного трансформатора;
  • хрупкость;
  • высокая стоимость.

Ксеноновые лампы.

Ксеноновая лампа - это источник света, представляющий собой устройство состоящее из колбы с газом (ксеноном) в котором светится электрическая дуга, которая возникает вследствие подачи напряжения на электроды лампы. Ксеноновая лампа дает яркий белый свет, близкий по спектру к дневному. Ксеноновые лампы обеспечивают интенсивный свет, яркость которого в 3 раза выше света чем у галогеновых ламп.

Достоинства:

  • интенсивный яркий свет;
  • надежность и высокий срок службы (3000 часов);
  • высокая экономичность;
  • малый нагрев.

Недостатки:

  • высокая стоимость;
  • необходимость применения «блока розжига»;

Натриевые лампы.

Натриевые лампы высокого давления (ДНаТ) имеют самую высокую светоотдачу среди всех известных газоразрядных ламп (100 - 130 лм/Вт), но плохую цветопередачу (Ra = 20-30), и характеризуются минимальным снижением светового потока при длительном сроке службы.

  • со временем лампы теряют яркость, тускнеют и неравномерно освещают дорогу
  • ослепление встречных водителей и пешеходов.

Инфракрасные лампы.

Лампа инфракрасная - это прибор, по принципу действия напоминает лампу накаливания. Колба инфракрасной лампы (обычно красного, реже - синего стекла) участвует в формировании спектра излучения, и увеличивает общий КПД лампы. Проходя через цветное стекло, оставшаяся в излучении доля видимого света «окрашивается» в инфракрасные цвета.

Инфракрасные лампы подразделяются на:

  • медицинские инфракрасные лампы;
  • инфракрасные лампы для обогрева;
  • инфракрасные лампы для сушки;

Керосиновые лампы.

Керосиновая лампа - это светильник, который работает на основе сгорания керосина - продукта переработки нефти. Принцип действия лампы прост, в ёмкость заливается керосин, в эту же емкость опускается фитиль. Другой конец фитиля зажимается поднимающим устройством в горелке, которая устроена таким образом, чтобы воздух проникал снизу.

Кварцевая лампа.

Кварцевая лампа - это ртутная газоразрядная лампа, имеет колбу из кварцевого стекла, предназначена для получения ультрафиолетового излучения. Применяют подобные лампы для обеззараживания различных помещений, предметов, продуктов питания.

Ультрафиолетовые лампы.

Ультрафиолетовая лампа работает по тому же принципу, что и обычная люминесцентная лампа: ультрафиолетовое излучение образуется в колбе вследствие взаимодействия паров ртути и электромагнитных разрядов. Газоразрядная трубка изготавливается из специального кварцевого или увиолевого стекол, имеющих способность пропускать УФ-лучи.

Проверенные временем лампы накаливания были преданы в нашей стране анафеме, но, несмотря на преобладание в ассортименте магазинов электротоваров «экономных» источников света, они все еще есть на прилавках и пользуются устойчивым спросом.

Конечно же, их конструкция, за почти сотню лет своего существования практически не претерпевшая изменений, кому-то может показаться архаичной и вызвать желание заняться модернизацией, чтобы они меньше потребляли электричества, реже перегорали и, вообще, вели себя «по-современному». Есть ли для этого возможности? Да, есть.

Один из способов осовременить «старушку» лампу накаливания – включить в цепь ее питания особый управляющий прибор – диммер. Этот англицизм происходит от слова «затемнять», а прибор занимается тем, что плавно уменьшает яркость свечения лампы.

Чтобы по своим уменьшила яркость свечения, надо уменьшить величину подаваемого на нее напряжения. Сделать это можно двумя способами:

  1. рассеять электрическую энергию на подходе к лампе;
  2. использовать питающее напряжение для запуска регулируемого прибора.

Рассеять электрическую энергию и не дать ей в полной мере дойти до лампы можно обычным реостатом . Таких миниатюрных приборов было немало в ламповых, да и полупроводниковых телевизорах, где они занимались различными регулировками. Например, звука. Если номинал небольшого реостата рассчитан на 220 вольт, то он без проблем погасит любую энергию от бытовой сети. Вопрос только в том, что при этом он сильно нагреется, ведь закон сохранения энергии еще никто не отменял.

Степень нагрева можно уменьшить, если использовать реостат больших размеров, например, балластный бытовой трансформатор , который включают в цепь питания электроприбора для компенсации временных бросков напряжения. Наличие у каждого выключателя большого – это не слишком эстетичное решение. Кроме того, рассеивание энергии не решает главной задачи – ее экономии. При включенном реостате, даже если лампочка светит вполнакала, счетчик будет крутиться с той же скоростью.

Чтобы электрическую энергию можно было реально сэкономить, надо между и выключателем поставить прибор, питающийся от сети, выходная мощность которого может регулироваться. Им может быть генератор автоколебаний , поскольку нить накаливания в лампе не различает тонкостей происхождения тока, ей главное – чтобы он был переменным.

Автоколебания – что это?

В радио- и электротехнике существует ряд схемных решений, которые позволяют менять направление выходного тока. Эти изменения направлений могут продолжаться до тех пор, пока на входе прибора существует питающее напряжение. Поэтому они называются автоколебаниями .

Если к выходу генератора автоколебаний подключить осциллограф, то на его экране вы увидите нечто, похожее на синусоиду. При внешней схожести с тем, что выдает , эти колебания имеют совершенно другую природу. По факту – это череда импульсов, меняющих знак.

Электротехнические приборы достаточно грубы, не отличают череды импульсов от синусоиды и прекрасно на них работают. Ярким примером такого «обмана» являются широко распространенные в последнее время , использующие автоколебания высокой частоты, за счет чего трансформатор прибора удалось уменьшить в несколько раз.

Вот такой генератор автоколебаний (только гораздо меньших размеров), выдающий череду импульсов с частотой 50 Гц, включается в цепь питания лампой накаливания. При создании схемы диммера для лампы накаливания используют современные полупроводниковые приборы – тиристоры, динисторы и симисторы.
Они позволяют наиболее просто управлять моментами отпирания и запирания, изменяя тем самым направления тока в цепи и генерируя автоколебания. Однако существуют генераторы автоколебаний на транзисторе, в основе которых лежит пара мощных полевых элементов. Также используют схему через блок защиты.

Плюсы и минусы регуляторов яркости ламп накаливания

Каждый прибор или устройство обладают суммой достоинств и недостатков, имеют их и диммеры ламп накаливания.

Главным, но, пожалуй, единственным достоинством этого прибора является то, что он позволяет регулировать яркость свечения, не вызывая побочного нагрева. Позволяет ли существенно сэкономить электрическую энергию и увеличить срок службы лампы? Судите сами:

  • для работы генератора автоколебаний переменный ток превращается в постоянный (на его входе стоит диодный мост), поэтому суммарный КПД устройства оказывается еще ниже, чем обычной лампы;
  • лампа накаливания при работе вне номинала напряжения также имеет более низкий КПД;
  • если начальное напряжение прибора более 30 процентов от номинальных 220 вольт, то начальный бросок тока при включении почти такой же, как и при работе от обычной сети.

Думается, что при таких условиях использование диммера является чисто эстетической прихотью.

Череда импульсов, выдаваемая диммером, является источником радиопомех. И чем короче импульс или выше частота их следования, тем шире спектр дополнительных гармоник.
Это физический закон и изменить его нельзя. Для компенсации этой неприятности в состав схемы прибора вводят LC фильтры (катушки с конденсаторами). Если в добавляются лампы большой мощности, имеющие длинную нить накаливания, то при минимальном напряжении они могут начать «петь» – именно из-за дополнительных гармоник.

Диммеры ламп накаливания категорически нельзя подсоединять в цепи питания компьютеров, телевизоров, радиоприемников, в , электронных пускорегулирующих аппаратов (ЭПРА). Вообще, если у вас в цепь управления осветительным прибором включен «затемнитель», при покупке ламп стоит обращать внимание на то, может ли она быть подвергнута диммированию.

Какие бывают диммеры

Несмотря на все недостатки этих приборов, они достаточно широко применяются. Во-первых, потому что какая-то экономия от их использования всё же наличествует, во-вторых, нельзя списывать со счетов и эстетический эффект.

Для потребителя, незнакомого с электротехникой, главным различием этих приборов является способ управления. Наиболее простые модели имеют ручку регулятора, расположенную на корпусе диммера. Если кому-то не нравится ручка, то есть модели с сенсорным управлением.

Самые дорогие из них имеют дистанционное управление – например, от пульта, похожего на «лентяйку», управляющую телевизором.
По принципу действия такие пульты различаются на работающие по радио- или инфракрасному каналу. Наиболее экзотические диммеры срабатывают от голоса, присутствия в помещении человека – управление с помощью разомкнутого емкостного контура или датчиков тепла.

В настоящее время многие ведущие производители электротехнической техники, такие как Schneider Electric, Feller, OSRAM и другие, начали выпуск диммеров не только для ламп накаливания, но и , а также люминесцентных источников света.

Пример регулирования яркости лампы с помощью диммера на видео

С.И. Паламаренко, г Киев

Часть 3. Методы бесстартерного зажигания ламп и классификация схем, схемы включения люминесцентных ламп с применением полупроводниковых приборов, работа люминесцентных ламп на постоянном токе, работа люминесцентных ламп на повышенной частоте, регулирование яркости люминесцентных ламп

Методы бесстартерного зажигания ламп и классификация схем

Наличие стартеров усложняет обслуживание, затягивает процесс зажигания, иногда приводит к неприятным миганиям отдельных ламп, в некоторых случаях неисправности стартера ("залипа-ние") могут приводить к выходу из строя исправных ламп. Поэтому предложено большое количество различных ПРА бесаартерного зажигания.

В зависимости от использованного режима существующие схемы бесстартерного зажигания ЛЛ дугового разряда делятся на две группы: схемы быстрого зажигания - с предварительным нагревом катодов, которые должны обеспечить "горячее зажигание" (их можно применить для ламп, у которых катоды имеют по два вывода), и схемы мгновенного зажигания - без предварительного накала катодов, рассчитанные на "холодное зажигание" (в этих схемах следует использовать лампы со специальными катодами). Для создания экономичных бесстартерных аппаратов необходимо снизить напряжение зажигания ламп до величины, меньшей напряжения в сети, с учетом его падения. Наиболее эффективными путями снижения напряжения зажигания являются предварительный накал катодов и применение проводящих полосок на колбе (или вблизи лампы).

При наличии полоски, соединенной с электродом, и накале катодов напряжение зажигания для ламп 30 и 40 Вт удается снизить до 130-150 В. Кроме того, на напряжение зажигания оказывают большое влияние такие факторы, как влажность и температура окружающего воздуха, состав и давление наполняющего газа, конструкция и состояние электродов и др.

О напряжении зажигания даже для одной лампы можно говорить только как о статистической величине, имеющей некоторое распределение. Поэтому зависимости напряжения зажигания от различных факторов должны изображаться в виде зоны, ширину которой следует строить по законам статистики. На

рис.10 показаны области, соответствующие различным условиям зажигания.

В области I лампа не зажигается, область II соответствует зажиганию при холодных катодах - область "холодных" зажиганий. Она наименее благоприятна для срока службы ламп с подогревными катодами. Область III соответствует зажиганию при достаточно прогретых катодах - область "горячих" зажиганий. В области IV возможны холодные зажигания, несмотря на ток подогрева катодов, достаточный для "горячего" зажигания.

Схемы быстрого зажигания должны обеспечивать предварительный накал катодов, достаточный для того, чтобы лампы работали в области "горячего" зажигания; подачу на лампу напряжения, гарантирующего "горячее" зажигание дугового разряда с учетом возможного разброса параметров ламп, пониженного напряжения в сети и других неблагоприятных факторов и по возможности исключающего "холодные" зажигания. Для гарантированного зажигания ламп без "полоски" (верхняя граница области III) требуется эффективное напряжение холостого хода не ниже 250-300 В (т.е. выше напряжения сети).

Наличие полосок и предварительный накал катодов позволяют при напряжении сети не ниже 210-220 В обойтись без дополнительного повышения напряжения, что значительно упрощает схемы ПРА. Поэтому во всех схемах без повышения напряжения необходимо применять "полоски". С этой целью выпускают специальные лампы с нанесенной на поверхность проводящей прозрачной полосой или общим покрытием. Следует подчеркнуть, что в сетях со значительным снижением напряжения подобные схемы не обеспечивают надежного зажигания ламп.

рис.11 показаны схемы, рассчитанные на работу с полоской. Предварительный накал катодов осуществляется от специальных накальных обмоток через автотрансформатор, первичная обмотка которого включена параллельно лампе. Сопротивление обмотки Z 3 выбирается значительно больше Z , чтобы при негорящей лампе все напряжение сети падало на Z 3 и в накальных обмотках возникала ЭДС, достаточная для нагрева катодов

(рис.11,а). После зажигания лампы напряжение на Z 3 падает, вследствие чего автоматически уменьшается ЭДС накальных обмоток и подкал катодов. Схема

рис.11,6 аналогична схеме рис. 12,а, но для небольшого повышения напряжения холостого хода последовательно с первичной обмоткой автотрансформатора включен конденсатор. В таких схемах обычно используется явление феррорезонанса. В схемах быстрого пуска следует применять ЛЛ с низкоомными катодами.

Поскольку бесстартерные ПРА для ЛЛ имеют значительно большие массу, габариты и потери мощности, чем стартерные, их следует применять только в специальных случаях, когда стартерные схемы неприменимы.

Световой поток (яркость) ЛЛ можно регулировать путем изменения силы тока разряда. При этом во избежание быстрого разрушения катодов и погасания разряда при значительном снижении тока необходимо поддерживать постоянно накал катодов и обеспечивать условия перезажигания разряда. Изменение тока лампы возможно осуществлять путем изменения напряжения питания, сопротивления балласта и фазы зажигания разряда.

В простейшем случае

рис.12,а) последовательно с лампой кроме дросселя включают резистор с переменным сопротивлением. Подогрев катодов осуществляется накальным трансформатором, а для облегчения зажигания и перезажигания применена проводящая полоса. Схема приемлема для небольшого числа ламп.

Изменение сопротивления дросселя обычно осуществляется путем под-магничивания его сердечника постоянным током. Для этого на дросселе без воздушного зазора делают две обмотки: одну подключают последовательно лампе, а вторая служит для подмагничивания. Дроссель рассчитывают так, чтобы при разомкнутой дополнительной обмотке ток лампы составлял несколько процентов от номинального. При включении нагрузки в дополнительную обмотку дросселя и изменении ее вплоть до короткого замыкания можно увеличивать ток в цепи лампы до номинального. В схеме под-

держивается независимый подкал катодов. Существуют и другие схемы магнитного регулирования, например, путем перемещения сердечника. Недоаатками этого метода является громоздкость аппаратов и большие потери.

рис. 12,6 регулирование светового потока осуществляется путем изменения напряжения питания через регулятор напряжения, а для расширения пределов регулирования параллельно источнику питающего напряжения через развязывающий и запирающий фильтры подключен вспомогательный маломощный источник высокой частоты (5-15 кГц), обеспечивающий зажигание и перезажигание ламп при малом питающем напряжении. Мощность вспомогательного источника ВЧ составляет около 1% мощности ламп. Схема позволяет осуществлять плавное регулирование яркости ЛЛ в пределах 1-200, и ее можно использовать в любой действующей осветительной установке без существенной переделки.

рис.12,в показана принципиальная схема фазового регулирования яркости ЛЛ. Обычно регулирование осущеавляется тиристорами Т1 и Т2. С увеличением пауз тока растет напряжение зажигания. Поэтому, как и в других подобных схемах, необходимы непрерывный подогрев катодов и применение ламп с проводящей заземленной полосой. При работе на частоте 50 Гц с ростом пауз тока увеличиваются пульсации яркости.

Схемы включения люминесцентных ламп

с применением полупроводниковых приборов

Шунтирование электродов лампы диодами или терморезисторами с отрицательным температурным коэффициентом в сочетании с обычной стартерной схемой включения позволяет повысить срок службы ламп, уменьшить мощность, потребляемую ПРА и увеличить световые параметры ламп.

рис. 13,а показана схема с шунтированием электродов ламп, в которой в качестве шунтирующего элемента применены терморезисторы (ТР) с отрицательным температурным коэффициентом. Схема работает следующим образом. В пусковой период при замыкании контактов стартера в цепи начинает протекать пусковой ток. Так как в холодном состоянии сопротивление ТР в 10 раз больше, чем его сопротивление в горячем состоянии, то примерно 90% пускового тока будет протекать через электроды лампы. Это обеспечивает предварительный прогрев электродов, и после нескольких последовательных контактирований электродов стартера лампа зажигается. В рабочем режиме ток лампы, протекая по ТР, разогревает его, и по прошествии 15-30 с наступает термодинамическое равновесие, когда сопротивление ТР достигает своего минимального значения. При этом рабочий ток лампы перераспределяется и проходит частично через ТР и частично через электрод. Выбирая минимальное сопротивление ТР примерно равным сопротивлению электрода лампы в горячем состоянии, можно добиться того, что рабочий ток лампы будет разветвляться на два тока. Тогда оба конца электрода будут эквипотенциальны, и лампа начнет работать в режиме, близком к режиму с двумя катодными пятнами.

При таком режиме работы лампы срок ее службы увеличивается. Наличие шунтирующего ТР также обеспечивает защиту лампы от перегрузки при замыкании электродов стартера. В таком аварийном режиме пусковой ток разогревает ТР, и с уменьшением его сопротивления примерно половина пускового тока будет протекать через ТР, минуя электроды лампы, и тем самым будет осуществлена защита лампы от перегрузки.

Схема обладает также и рядом недостатков. В пусковом режиме схема работает как обычная стартерная с присущими ей недостатками. Другой недостаток состоит в том, что после выключения лампы нужно дать время на остывание терморезистора. Если этого не делать, то шунтирующее действие ТР приведет к недогреву электродов лампы и ее холодному зажиганию. Это снижает надежность зажигания ламп.

Терморезистор, применяемый для шунтирования электродов лампы, должен удовлетворять определенным требованиям. Он должен быть рассчитан на номинальный ток не менее 0,65 А, его холодное сопротивление (при 20°С) должно быть не менее 350-400 Ом, сопротивление по истечении 0,5-1 мин после включения схемы должно составлять не менее 100 Ом, горячее сопротивление должно быть не более 20 Ом.

рис. 13,6 приведена схема, в которой в качестве шунтирующего элемента применены полупроводниковые диоды, включенные встречно друг другу. Схема работает следующим образом. В пусковом режиме каждый полупериод ток проходит только через один шунтирующий диод и уже через 0,01 с достигает почти установившегося значения (для ламп 40 Вт ток равен 0,35 А при напряжении сети 200 В). В этом случае шунтирование электрода лампы диодом приводит к уменьшению тока предварительного подогрева, что может вызвать либо затягивание процесса зажигания лампы, либо ее холодное зажигание. В рабочем режиме каждый полупериод один диод открыт, другой закрыт. Открытым будет тот диод, который шунтирует электрод, работающий в катодном режиме. При открытом диоде рабочий ток лампы проходит по обоим выводам электрода. По мере перемещения катодного пятна по виткам электрода ток в одном проводе уменьшается, в другом увеличивается, оставаясь в среднем за период меньше номинального тока в каждой части электрода. Экспериментально доказано, что в этой схеме температура катодного пятна уменьшается, а его площадь увеличивается. При этом срок службы ламп несколько увеличивается, уменьшаются потери мощности в лампе и на 4-5% повышается их световая отдача.

Для улучшения пусковых характеристик схемы можно применить дополнительную катушку w д

(рис. 13,в), намотанную на общий с основным дросселем магнитопровод (встречно по отношению к основной). При этом в пусковом режиме уменьшается полное сопротивление цепи и увеличивается ток предварительного подогрева (приближается к току подогрева для обычной стартерной схемы). В качестве шунтирующих диодов можно применить диоды с допустимым обратным напряжением не менее 10 В и с прямым током не менее 0,3 А.

Вместо стартеров тлеющего разряда можно с успехом использовать динисторы. Вольт-амперная характеристика динистора имеет участок с отрицательным дифференциальным сопротивлением. В пусковом режиме

(рис. 14,а) при подаче на лампу напряжения питания в каждый положительный полупериод динистор остается закрытым до тех пор, пока мгновенное напряжение, приложенное к динистору, ниже включающего напряжения. Сопротивление динистора в закрытом состоянии составляет несколько десятком мегаом, поэтому ток в цепи будет весьма малым. После переключения динистора в проводящее состояние в цепи устанавливается ток предварительного подогрева и начинается процесс подогрева электродов. Напряжение на лампе при этом снижается примерно до 2 В (остаточное напряжение на динисторе ДТ1 и падение напряжения на диоде Д2). Диод в схему включают в случае, когда обратное напряжение динистора меньше амплитуды напряжения в сети.

В отрицательные полупериоды динистор закрыт, ток через электроды лампы не проходит, и напряжение на лампе равно напряжению сети. Описанный процесс автоматически повторяется до тех пор, пока электроды лампы не прогреются, и в лампе не возникнет дуговой разряд. После зажигания лампы напряжение на ней снизится до рабочего напряжения, и динистор останется закрытым, если рабочее напряжение на лампе ниже напряжения включения динистора.

Процесс зажигания лампы в схеме с динистором по сравнению с обычной стартерной схемой имеет то отличие, что разрыв контактов стартера может произойти в любой момент (при различных значениях тока предварительного подогрева, в том числе и при максимальном), а в схеме с динистором - в момент его выключения. Время зажигания лампы для ПРА с динистором обычно составляет 0,5-2 с.

Недостаток схемы заключается в следующем. В процессе горения лампы наблюдаются пики перезажигания, которые могут достигать до 30% амплитуды рабочего напряжения на лампе и иметь длительность до 400 мкс. Из-за этого приходится повышать напряжение включения динистора, так как возможны ложные срабатывания динистора из-за пиков перезажигания. Повышение напряжения включения приводит к уменьшению угла отсечки, что ухудшает эксплуатационные характеристики схемы.

Для устранения этого недостатка предложена схема

рис. 14,б, где для подавления пика перезажигания последовательно с динистором и диодом включена дополнительная индуктивность в виде небольшого дросселя L fl , а параллельно - резистор г д. Опытным путем установлено, что сопротивление г д не должно быть ниже 10 кОм. Постоянную времени добавочной цепи т д = L д /r д выбирают из условия ее равенства половине длительности пика перезажигания, т.е. примерно 200 мкс. Исходя из этого, индуктивность дросселя должна быть не менее 2 Гн. Но введение такого элемента уменьшает пусковой ток лампы. Поэтому дополнительная индуктивность должна иметь нелинейную вольт-амперную характеристику, обеспечивающую получение большой индуктивности при малых токах (рабочий режим) и малую индуктивность при больших токах (пусковой режим). Такую индуктивность можно получить при использовании дросселя с ферритовым кольцевым магнитопроводом. Экспериментальная проверка показала, что получается снижение напряжения на динисторе на 50-75%.

рис.14,в показана схема, в которой применены два динистора и rC-цепочка. В момент включения схемы конденсатор С через диод и резистор r1 заряжается, и напряжение на нем близко к амплитудному

напряжению сети. Как только напряжение на С станет равным напряжению включения динистора ДТ2, он включается, и все напряжение сети будет приложено к динистору ДТ1, который тоже включается. После этого начинается режим прогрева электродов лампы. Дальше схема работает так же, как и схема рис. 14,а. Резистор r огр ограничивает ток через ДТ2 при разряде конденсатора С, а резистор r 2 является разрядным сопротивлением конденсатора. Сопротивления резисторов r1 = 50 кОм; г 2 = 500 кОм, а емкость С = 2000 пФ.

Вместо динисторов можно применить тиристор

(рис. 14,г). В цепь управляющего электрода тиристора включен стабилитрон, напряжение стабилизации которого выбрано близким к напряжению переключения тиристора. В этом случае схема будет работать аналогично схеме с одним динистором.

Применение в схемах включения люминесцентных ламп термосопротивлений с положительным температурным коэффициентом-позисторов представляет возможность обеспечить бесстартер-ное зажигание ламп без применения накальных трансформаторов.

рис.15 показаны два варианта схем с использованием по-зисторов. На рис. 15,а позистор включен параллельно лампе вместо стартера. Зажигание лампы осуществляется следующим образом. В холодном состоянии позистор имеет такое сопротивление, что начальный ток предварительного подогрева электродов примерно равен номинальному току лампы. По мере нагрева позистора его сопротивление уменьшается до тех пор, пока не достигнет точки Кюри. В этот период растет ток предварительного подогрева. Начиная с точки Кюри, сопротивление позистора резко возрастает, а вместе с этим растет напряжение на лампе, и при достижении напряжения зажигания лампа зажигается. После зажигания ток через позистор становится малым, и потери в нем составляют 4-5% мощности лампы. Время зажигания лампы мощностью 40 Вт при опытной проверке этой схемы составило 8,7 с. Лампа должна быть снабжена заземленной проводящей полосой либо должен применяться заземленный металлический светильник. Сопротивление позистора зависит от его температуры, поэтому для повторного зажигания лампы позистор должен остыть до температуры, близкой к температуре окружающей среды, на что требуется 4-5 мин. Это недостаток всех схем, связанных с использованием термосопротивлений.

Преимущества, создаваемые применением позисторов, - высокая надежность, долговечность (обеспечивает более 106 включений), увеличение срока службы ламп за счет снижения вероятности холодных зажиганий и малые потери мощности в пуско-регулирующей аппаратуре (ПРА) по сравнению с бесстартерны-ми аппаратами.

На рис. 15,6 показана схема включения лампы с позистором, когда для зажигания лампы требуется повышенное напряжение холостого хода. Параллельно лампе включена ветвь, содержащая конденсатор С и позистор rl, и вторая ветвь с позистором г2. При подаче на лампу напряжения питания в контуре, образованном дросселем Др и конденсатором С, возникают резонансные явления, и напряжение на лампе повышается. Позистор г2 имеет малое "холодное" сопротивление, поэтому ток предварительного подогрева большой. После предварительного подогрева электродов лампа зажигается, одновременно возрастают сопротивления rl и г2 и конденсатор С практически отключается от цепи с помощью позистора г2.

рис. 16 показаны варианты устройств с двумя параллельными цепочками: одна из которых коммутирующая, вторая формирующая импульсы. На рис. 16,а коммутирующая цепь состоит из динистора VD1, а цепь формирования импульсов состоит из последовательно соединенных диода VD2 и конденсатора С, параллельно которому подключен резистор R. В пусковом режиме устройство работает оба полупериода. В течение одного полупериода динистор пробивается и осуществляется подогрев электродов лампы, в течение второго полупериода на лампу подается зажигающий импульс. Амплитуда импульса должна быть недостаточной для зажигания холодной лампы. После зажигания лампы коммутирующая цепь отключается. На рис. 16,6 коммутирующая цепь состоит из двух динисторов VD1 и VD2, первый из которых зашунтирован резистором R. С помощью этого резистора можно выбрать соответствующее напряжение включения динисторов и обеспечить оптимальный пусковой ток в зависимости от мощности лампы.

Интересным направлением в области применения полупроводниковых приборов в схемах зажигания ламп является создание полупроводникового балласта, который применяется вместо обычного индуктивного балласта. В качестве примера можно привести устройство на

рис.17. Люминесцентная лампа включена в сеть с помощью накального повышающего трансформатора НТ. Первичная обмотка НТ подключена к сети через симистор VS1 и конденсатор СЗ. Параллельно симистору VS1 включена цепь R1C1 через симметричный динистор VD1. Вторая аналогичная ячейка, состоящая из симистора VS2, динистора VD2 и цепочки R2C2, включена параллельно накальному трансформатору НТ и конденсатору СЗ. Дроссель Др небольшой индуктивности препятствует отпиранию VS2 раньше, чем открылся VS1. При подаче напряжения питания на схему VS1 заперт, ток через резистор R1 заряжает С1. После заряда конденсатора С1 динистор VD1 пробивается, и на управляющий электрод VS1 подается управляющий импульс. VS1 открывается, и через первичную обмотку НТ и конденсатор СЗ начинает протекать ток, значение которого ограничивает СЗ. Во вторичной обмотке НТ появляются напряжение и ток, достаточные для зажигания и горения лампы, Одновременно начинается заряд конденсатора С2, пробой динистора VD2 и открывание симистора VS2. Сдвиг по фазе открытия VS2 по отношению к VS1 регулируется индуктивностью дросселя Др. При открытии VS2 закрывается VS1, и ток разряда конденсатора СЗ индуктирует в лампе ток в направлении, противоположном первоначальному. После разряда СЗ процесс повторяется. Таким образом, через лампу протекает ток повышенной частоты.

Эта схема эффективна при пониженном напряжении сети и применении для питания лампы повышенной частоты 800... 1000 Гц. По сравнению с обычной балластной эта схема имеет преимущества: меньшие потери мощности в ПРА, повышенная световая отдача лампы и больший срок ее службы.

Работа люминесцентных ламп на постоянном токе

При включении люминесцентных ламп в сеть постоянного тока имеет место ряд явлений, которые вносят определенные особенности в их работу; схемы включения ламп в сеть отличаются от вышерассмотренных схем переменного тока.

При питании ламп постоянным током полярность электродов остается неизменной, поэтому электроды лампы работают в неодинаковом режиме: электрод, являющийся анодом, перегревается, и для сохранения необходимого срока службы лампы требуются различные конструкции анода и катода. Но на практике такие лампы почти не выпускаются и нужно использовать стандартные. А для стандартных ламп приходится время от времени проводить переполюсовку ламп, чтобы износ электродов происходил равномерно.

Кроме того, при работе ламп на постоянном токе наблюдается явление катафореза, связанное с тем, что положительные ионы ртути под действием электрического поля в процессе работы лампы перемещаются к катоду, в результате анодный конец лампы обедняется ртутью. У катода положительные ионы ртути нейтрализуются, превращаясь в атомы ртути, и излишняя ртуть конденсируется на стенках трубки. В рабочем режиме плотность паров ртути по длине трубки получается неодинаковой, яркость свечения лампы уменьшается, и через несколько десятков часов работы лампы ее яркость может уменьшиться вдвое. Появление катафореза тоже вынуждает проводить переполюсовку через определенные промежутки времени.

В качестве балласта при питании ламп постоянным током применяют активное сопротивление либо в виде резистора, либо в виде лампы накаливания. Напряжение на активном балласте равно разности между напряжением сети и рабочим напряжением на лампе. Поэтому потери мощности в балласте могут в 1,5-2 раза превышать мощность лампы, по этой причине этот способ стабилизации лампы оказывается экономически невыгодным. Применение балластной лампы накаливания улучшает общую экономичность комплекта за счет дополнительного светового потока, созданного лампой накаливания.

При использовании в цепи постоянного тока стандартной люминесцентной лампы для сохранения ее светового потока на уровне, который она имела при питании на переменном токе, рабочий ток лампы должен быть уменьшен на 10-20% по сравнению с током при работе на переменном напряжении.

Требования к предварительному подогреву электродов лампы и обеспечению определенного уровня напряжения холостого хода ПРА для зажигания лампы остаются примерно аналогичными, как и для переменного тока. Для исключения холодных зажиганий ламп подача поджигающего импульса должна производиться при достаточно прогретых электродах. В отличие от работы лампы на переменном токе при использовании для образования зажигающего импульса дросселя на размер импульса не влияет момент переключения схемы с режима предварительного подогрева на рабочий режим, так как в дросселе протекает постоянный по времени ток. Сопротивление дросселя определяется только его активным сопротивлением.

Рассмотрим простейшие схемы включения люминесцентных ламп на постоянном токе. На

рис.18,а показана схема включения люминесцентной лампы с предварительным нагревом электродов, работающей от сети с напряжением, достаточным для ее зажигания. Напряжение зажигания на постоянном токе выше напряжения зажигания на переменном токе. Это объясняется тем, что электрическое поле на участках "электрод-стенка" и между электродами однородное. Стандартные лампы при включении в рассматриваемую схему должны быть снабжены проводящей полосой, а напряжение сети должно превышать в 3-4 раза рабочее напряжение лампы. Предварительный нагрев электродов обеспечивается при замыкании выключателя В2. Переход из пускового режима в рабочий произойдет, когда напряжение зажигания лампы снизится и станет меньшим напряжения сети. В рабочем режиме выключатель В2 разомкнут.

Более рациональная схема приведена на

рис. 18,6. Для уменьшения требуемого напряжения питания и возможности использования стандартных ламп без проводящей полосы в цепь лампы включают дроссель и применяют стартер постоянного тока, работающий на принципе теплового стартера. В нормальном состоянии его контакты замкнуты. При подаче на лампу напряжения питания начинается предварительный подогрев ее электродов. Одновременно с этим тепловой эле-

мент стартера обеспечивает с не- _ которой задержкой времени размыкание контактов стартера. При разрыве контактов стартера за счет индуктивности дросселя воз-никает импульс напряжения, необ-ходимый для зажигания лампы. В этой схеме напряжение сети должно быть примерно в 2 раза выше рабочего напряжения лампы.

Во всех случаях предусматривается возможность переполюсовки ламп через определенный промежуток времени. При питании ламп через выпрямитель от сети переменного тока представляется целесообразным балласт устанавливать на стороне переменного тока и применять для этого дроссель или трансформатор с рассеянием.

Работа люминесцентных ламп на повышенной частоте. С ростом частоты питающего напряжения значения токов, напряжений и коэффициентов мощности ламп с различными типами балластов (R, L, С) сближаются между собой, а начиная с частот 800-1000 Гц, практически перестают зависеть от типа балласта. Уменьшение влияния типа балласта на электрические характеристики ламп при повышении частоты объясняется тем, что с ростом частоты динамические характеристики разряда приближаются к равновесию. Форма кривых тока и напряжения для всех типов балластов показана на

рис.19, где первая колонка относится к индуктивному балласту, вторая -к резистивному, а третья - к емкостному. С ростом частоты коэффици-

ент пульсаций светового потока монотонно падает (50 Гц - 60%, 1000 Гц - 25%, 5000 Гц - 10%). Падение происходит за счет инерционности свечения люминофора и появления постоянной составляющей в излучении разряда, начиная с 400 Гц.

С ростом частоты наблюдается неравномерный рост световой отдачи, продолжающийся примерно до 20000 Гц. При дальнейшем повышении частоты отдача растет незначительно. Параметры энергоэкономичной лампы мощностью 58 Вт при работе на частотах 50 Гц и 35 кГц приведены в

таблице.

Из таблицы видно, что при переходе на повышенную частоту светоотдача комплекта лампа-ПРА повышается на 20%.

Срок службы ламп на частоте 1 кГц примерно на 15% выше, чем на промышленной частоте в том же режиме. Но при дальнейшем повышении частоты продолжительность горения быстро падает: на частоте 10 кГц она уже на 15% меньше, чем на промышленной частоте.

Условия стабилизации разряда на повышенной частоте остаются в общем теми же, что и на промышленной. Поэтому в качестве стабилизирующего сопротивления можно применять индуктивный, емкостной или смешанный балласты. С ростом частоты будут заметно уменьшаться масса и габариты ПРА. Например, при переходе с частоты 50 Гц на частоту 3000 Гц масса дросселя уменьшается более чем в 30 раз (в ка-

честве сердечника нужно применять не электротехническую сталь, а феррит или альсифер). Более того, на высоких частотах целесообразнее применять не индуктивность, а емкость.

рис.20 показана структурная схема осветительной установки с питанием ламп на повышенной частоте. Переменный ток промышленной частоты следует сначала преобразовать в постоянный ток с помощью выпрямителя. Далее постоянный ток инвертируется в переменный ток повышенной частоты и по распределительной сети подводится к ПРА и лампам.

рис.21 приведены простые схемы включения ламп на повышенной частоте. На этих частотах стартеры не обеспечивают надежного зажигания люминесцентных ламп из-за уменьшения времени контактирования и невозможности получения достаточного зажигающего импульса напряжения на лампе из-за уменьшения индуктивности цепи, поэтому можно применять только бесстартер-ные схемы зажигания ламп.

рис.21 а,б приведены резонансные схемы быстрого зажигания. Предварительный подогрев электродов осуществляется током резонансного контура, образованного индуктивностью и емкостью. За счет падения напряжения на цепи, параллельной лампе, в пусковом режиме создается необходимое зажигающее напряжение, превышающее в 1,5-2 раза номинальное напряжение сети.

Необходимое напряжение холостого хода ПРА создается за счет резонансных явлений в цепи индуктивности и емкости.

Схема на

рис.21,в отличается от предыдущих резонансных схем тем, что для предварительного подогрева электродов введен специальный накальный трансформатор, а в качестве балласта используется емкость. Возможно применение балластного дросселя, но при этом напряжение сети должно быть достаточным для зажигания лампы с подогревными катодами.

Регулирование яркости люминесцентных ламп

В отличие от ламп накаливания, для которых плавное регулирование яркости решается достаточно просто, для люминесцентных ламп требуется выполнение определенных условий. Отличие методов регулирования объясняется различным характером зависимости светового потока от тока через лампу для ламп накаливания и люминесцентных. Кроме того, падающая вольт-амперная характеристика люминесцентных ламп и повышение напряжения повторного зажигания при уменьшении тока через лампу делают невозможным регулирование их яркости путем проаого снижения напряжения на лампе. Яркость люминесцентной лампы можно уменьшить путем регулирования тока через лампу, но при сохранении неизменным или даже несколько повышенном напряжении на ней. При этом следует применять лампы с предварительным подогревом электродов, снабженные проводящей полосой.

Возможны три метода регулирования яркости люминесцентных ламп: изменением напряжения, подаваемого на регулирую-

щий элемент; изменением полного сопротивления балласта; регулированием фазы зажигания лампы. Во всех трех методах регулирование яркости лампы осуществляется за счет изменения тока, проходящего через лампу. Первые два метода имеют ограниченное применение из-за недостатков. Наиболее экономичным является метод фазовой регулировки времени зажигания лампы.

рис.22 показана простейшая схема регулирования яркости одной лампы по третьему методу. Последовательно с лампой, кроме балластного дросселя, включен резистор Rn с регулируемым сопротивлением, значение которого определяется мощностью лампы (для лампы 40 Вт оно составляет 1...1,5 МОм). Предварительный подогрев электродов осуществляется на-кальным трансформатором. Изменяя сопротивление резистора, регулируют яркость лампы. Такая схема применима и для нескольких последовательно включенных ламп. При параллельном включении ламп каждая должна иметь свой балласт и на-кальный трансформатор. Регулируемое сопротивление включают в каждую парал-

лельную ветвь и объединяют общим проводом. Данный метод позволяет регулировать яркость в примерно 300 раз и может быть использован в небольших установках с 8-10 лампами. При большом числе ламп этот метод становится неэкономичным.

рис.23 показана принципиальная схема регулирования яркости люминесцентной лампы с дросселем, подмагничивае-мым постоянным током - магнитным усилителем (МУ). Одна обмотка дросселя включена последовательно с лампой и выполняет роль балластного сопротивления, вторая (управляющая) питается постоянным током от двухполупериодного выпрямителя. Для изменения тока в управляющей обмотке последовательно с ней включен регулируемый резистор. С увеличением тока в управляющей обмотке сопротивление дросселя переменному току уменьшается, и ток лампы растет. Для предварительного подогрева электродов ламп служит накальный трансформатор.

Недостатки этого метода - громоздкость регулирующих устройств и повышенные потери мощности, поэтому применение магнитных усилителей для регулирования можно рекомендовать при небольшом количестве ламп.



Перспективная схема регулирования яркости люминесцентных ламп, в которой используются два источника питания: один основной, имеющий промышленную частоту, и второй вспомогательный, включенный параллельно с первым и подающий к лампам напряжение повышенной частоты показана на

рис.24. Группа параллельно включенных ламп, имеющих индивидуальные балластные дроссели и накальные трансформаторы для предварительного подогрева электродов, питается через автотрансформатор AT от сети с частотой 50 Гц. Между автотрансформатором и лампами включен вспомогательный источник высокой частоты ИВЧ, например 5-15 кГц. Для исключения замыкания этих источников питания друг на друга последовательно с каждым из них включен развязывающий и запирающий фильтр, рассчитанный соответственно на частоты 50 Гц и 5-15 кГц.

При номинальном напряжении питания воздействие дополнительного высокочастотного напряжения мало, и оно практически не влияет на яркость ламп. При снижении напряжения на лампах с помощью автотрансформатора изменяется мощность, подводимая к лампам, и их яркость уменьшается. Вместо автотрансформатора для регулирования напряжения можно быть использовать тиристорный блок. Такой блок регулятора состоит из двух тиристоров, включенных встречно-параллельно (или си-мистора), и датчика зажигающих импульсов. Путем регулирования фазы зажигающих импульсов, подаваемых на управляющие электроды тиристоров, можно изменять ток, проходящий через нагрузку. Когда напряжение питания будет снижено до нуля, лампы окажутся включенными на источник высокой частоты, ток через лампы становится весьма малым, но в то же время достаточным для поддержания стабильного горения ламп. Таким образом, источник высокой частоты обеспечивает зажигание и перезажигание ламп при малом напряжении питания, т.е. при минимальной яркости. Мощность высокочастотного источника питания должна составлять примерно 1% мощности ламп.

Приведенная схема позволяет плавно регулировать яркость люминесцентных ламп в 200 раз и ее можно использовать в любой действующей осветительной установке, так как не требуется существенная переделка.

рис.25 показана схема преобразователя частоты на транзисторах с задающим генератором, позволяющим получить частоту и амплитуду выходного напряжения, почти не зависящими от изменения нагрузки. Задающий генератор собран на транзисторах VT1 и VT2 с насыщающимся дросселем Др в цепи обратной связи. Двухтактный усилитель мощности собран на двух транзисторах VT3 и VT4. Преобразователь рассчитан на выходную частоту 5 кГц. Такой преобразователь может обеспечить регулирование яркости 50-60 люминесцентных ламп мощностью 40 Вт. Применение вместо транзисторов тиристоров позволяет создать более мощные преобразователи.

Недостаток этого преобразователя - сильное влияние на его работу емкостного характера нагрузки, в результате чего ограничивается выходная мощность. Этот недостаток схемы можно устранить, если емкостную нагрузку включать как составной элемент резонансного задающего контура.

рис.26 приведена схема преобразователя, построенная на этом принципе. Благодаря тому что емкостная нагрузка введена в задающий резонансный контур, этот контур становится не только задающим, но и нагрузочным. Токи через базу и коллектор каждого транзистора совпадают по фазе и имеют форму полусинусоиды, поэтому коммутационные потери в транзисторах снижаются почти до нуля, что позволяет использовать преобразователь на максимальную мощность. В данной схеме использовались транзисторы типа КТ805Б. Запуск преобразователя осуществляется от релаксационного генератора, собранного из RC-цепочки и переключающих диодов VD1, VD2. Опытный образец преобразователя, собранного по этой схеме, имел мощность 200 Вт и обеспечивал регулирование яркости 150 ламп типа ЛБ-40.

СОДЕРЖАНИЕ

Введение


  1. Классификация и основные параметры электрических источников света

    1. Лампы накаливания

    2. Люминесцентные лампы низкого давления

    3. Люминесцентные лампы высокого давления

  2. Схемы питания люминесцентных ламп

  3. Основные светотехнические величины

  4. Техника безопасности при обслуживании электроосветительных установок

ВВЕДЕНИЕ

Установки электрического освещения используют во всех про­изводственных и бытовых помещениях, общественных, жилых и других зданиях, на улицах, площадях, дорогах, переездах и т.п. Это самый распространенный вид электроустановок. Различают три вида электрического освещения.

Рабочее освещение предназначается для нормальной деятельно­сти во всех помещениях и на открытых участках при недостаточном естественном освещении. Оно должно обеспечивать нормируемую освещенность в помещении на рабочем месте.

Аварийное освещение предназначается для создания условий безопасной эвакуации людей при аварийном отключении рабочего освещения в помещениях или продолжении работ на участках, где работа не может быть прекращена по условиям технологии. Ава­рийное освещение должно создавать освещенность не менее 5 % общего для продолжения работы или не менее 2 лк, а эвакуационное - не менее 0,5 лк на полу, по основным проходам и лестницам.

Охранное освещение вдоль границ охраняемой территории явля­ется составной частью рабочего освещения, создаст освещенность зоны с обеих сторон ограды.

По правилам устройства электроустановок освещение делят на три системы.

Общее освещение в производственных помещениях может быть равномерным (с равномерной освещенностью по всему помеще­нию) или локализованным, когда светильники размещают так, чтобы на основных рабочих местах создавалась повышенная освещен­ность. Местная система обеспечивает освещение рабочих мест, предметов и поверхностей.

Комбинированной называют такую систему освещения, при ко­торой к общему освещению помещения или Пространства добавля­ется местное, создающее повышенную освещенность на рабочем месте. Основным элементом осветительной электроустановки яв­ляется источник света - лампа, преобразующая электроэнергию в световое излучение.

Большое распространение получили два класса источников света: лампы накаливания и газоразрядные (люминесцентные, ртут­ные, натриевые и ксеноновые).

Основными характеристиками лампы являются номинальные значения напряжения, мощности светового потока (иногда - силы света), срок службы, а также габариты (полная длина L, диаметр, высота светового центра от центрального контакта резьбового или штифтового цоколя до центра нити).

Наиболее употребительные типы цоколей: Е - резьбовой; В s - штифтовой одноконтактный, В d - штифтовой двухконтактный (последующие буквы обозначают диаметр резьбы или цоколя).

Кроме того, применяют фокусирующие Р, гладкие цилиндри­ческие софитные SV некоторые другие цоколи.

В маркировке ламп общего, назначения буквы означают: В - вакуумные, Г - газонаполненные, Б - биспиральные газонапол­ненные, БК - биспиральные криптоновые.

Большое значение имеет зависимость характеристик ламп на­каливания (ЛН) от фактически подводимого напряжения. С повы­шением напряжения увеличивается температура накала нити, свет становится белее, быстро возрастает поток и несколько медленнее световая отдача, в результате этого резко уменьшается срок службы лампы.

Широко применяемые в осветительных установках трубчатые люминесцентные ртутные лампы (ЛЛ) низкого давления имеют ряд существенных преимуществ по сравнению с ЛН; например, высо­кую световую отдачу, достигающую 75 лм/Вт; большой срок службы, доходящий у стандартных ламп до 10 000 ч: возможность примене­ния источника света различного спектрального состава при лучшей для большинства типов цветопередаче, чем у ламп накаливания; относительно малую (хотя и создающую ослепленность) яркость, что в ряде случаев является достоинством.

Основными недостатками ламп ЛЛ являются: относительная сложность схемы включения; ограниченная единичная мощность и большие размеры приданной мощности; невозможность переклю­чения ламп, работающих на переменном токе, на питание от сети постоянного тока: зависимость характеристик от температуры внешней среды. Для обычных ламп оптимальная температура ок­ружающего воздуха 18 - 25°C, при отклонении температуры от оптимальной световой поток и световая отдача снижаются; при t
При действующих нормах, в которых разрыв между значениями освещенности для ламп накаливания и газоразрядных в большин­стве случаев не превышает двух ступеней, высокая световая отдача и большой срок службы ЛЛ так же, как ламп ДРЛ, делают их в большинстве случаев более экономичными, чем лампы накалива­ния.

Достоинствами ламп ДРЛ являются: высокая световая отдача (до 55 лм/Вт); большой срок службы (10 000 ч); компактность; устойчивость к условиям внешней среды (кроме очень низких температур).

Недостатками ламп ДРЛ следует считать: преобладание в спек­тре лучей сине-зеленой части, ведущее к неудовлетворительной цветопередаче, что исключает применение ламп в случаях, когда объектами различения являются лица людей или окрашенные по­верхности; возможность работы только на переменном токе; необ­ходимость включения через балластный дроссель; длительность разгорания при включении (примерно 7 мин) и начало повторного зажигания даже после очень кратковременного перерыва питания лампы после остывания (примерно 10 мин); пульсации светового потока, большие, чем у люминесцентных ламп; значительное сни­жение светового потока к концу срока службы.

Лампы накаливания изготовляют на напряжения 12-20 В мощностью 15-1500 Вт. Срок службы ламп накаливания общего назначения составляет 1000 ч. световой поток, измеряемый в лю­менах, на 1 Вт потребляемой лампой мощности колеблется от 7 (для ламп малой мощности) до 20 лм/Вт (для ламп большой мощности). Колбы ламп накаливания наполняют нейтральным газом (азотом, аргоном, криптоном), что увеличивает срок службы вольфрамовой нити накала и повышает экономичность ламп.

В настоящее время выпускают зеркальные лампы накаливания типов ЗК и ЗШ на повышенное напряжение: 220-230, 235-245 В.

Галогенные лампы накаливания типа КГ-240 (трубчатой формы с вольфрамовой нитью в кварцевой колбе) мощностью 1000, 1500 и 2000 Вт получили распространение в связи с повышенной свето­отдачей.

Люминесцентные лампы представляют собой заполненную га­зом - аргоном - стеклянную трубку, внутренняя поверхность ко­торой покрыта люминофором. В трубке имеется также капля ртути. При включении в электрическую сеть в лампе образуются пары ртути и возникает свет, близкий к дневному.

Электротехническая промышленность выпускает серию энергоэкономичных ламп ЛЛ, предназначенных для общего и местного освещения промышленных, общественных и административных помещений (ЛБ18-1, ЛБ36, ЛДЦ18, ЛБ58). Для жилых помещений применяют лампы ЛЕЦ18, ЛЕЦ36, ЛЕЦ58, которые по сравнению со стандартными ЛЛ мощностью 20, 40, и 65 Вт имеют повышенный КПД, уменьшенное на 7-8% потребление электроэнергии, мень­шую материалоемкость, повышенную надежность при хранении и транспортировании. Для административных помещений выпускают ЛЛ с улучшенной цветопередачей (ЛЭЦ и ЛТБЦЦ) мощностью 8-40 Вт. Лампы имеют линейную и фигурную форму (U и W-об­разную, кольцевую). Все лампы, кроме кольцевых, имеют на концах двухштыревые цоколи.

По спектру излучаемого света ЛЛ разделяют на типы: ЛБ - белая, ЛХБ - холодно-белая, ЛТБ - тепло-белая, ЛД-дневная и ЛДЦ - дневная правильной цветопередачи.

Дуговые ртутные лампы ДРЛ высокого давления с исправленной цветностью состоят из стеклянной колбы, покрытой люминофором, внутри которой помещена кварцевая газоразрядная трубка, напол­ненная ртутными парами.

Газоразрядные металлогалоидные лампы ДРИ выпускают со световой отдачей 75-100 лм/Вт продолжительностью горения 2000-5000 ч. Эти лампы обеспечивают лучшую цветопередачу, чем лампы ДРЛ.

Для освещения сухих, пыльных, влажных помещений выпуска­ют металлогалоидные зеркальные лампы-светильники типа ДРИЗ.

Натриевые лампы ДНаТ мощностью 400 и 700 Вт излучают золотисто-белый свет; их световая отдача 90-120 лм/Вт, продол­жительность горения более 2500 ч.


  1. Классификация и основные параметры электрических источников света

Электрические источники света по способу генерирования ими излучения могут быть разделены на температурные (лампы накаливания) и люминесцентные (люминесцентные и газоразряд­ные лампы).

Основные параметры электрических источников света: на­пряжение питающей сети; номинальная мощность; световая от­дача, измеряемая числом люменов на один ватт (лм/Вт); пуско­вые и рабочие токи; номинальный световой поток; спад свето­вого потока через определенное время эксплуатации; средняя продолжительность работы лампы.

1.1. Лампы накаливания

Для целей освещения все еще широко применяются электри­ческие лампы накаливания, что объясняется простотой их экс­плуатации и включения в сеть, надежностью и компактностью.

Основной недостаток ламп накаливания - низкий КПД (около 2 %), т. е. лампы накаливания больше греют, чем светят. Срок службы ламп накаливания составляет в среднем 1000 ч. Лампы накаливания очень чувствительны к изменениям подво­димого к ним напряжения. Повышение напряжения на 1 % сверх номинального приводит к повышению светового потока на 4 % и снижению срока службы на 13-14 %. При понижении на­пряжения срок службы возрастает, но снижается световой поток лампы, что сказывается на производительности труда работаю­щих.

Срок службы ламп накаливания снижается при их вибраци­ях, частых включениях и отключениях, невертикальном положе­нии. Свет ламп накаливания отличается от естественного преоб­ладанием лучей желто-красной части спектра, что искажает есте­ственную расцветку предметов.

Лампы накаливания могут быть вакуумными (тип В мощно­стью от 15 до 25 Вт) и газополными (типы Г, Б, БК мощностью от 40 до 1500 Вт).

Газополные лампы типа Г (моноспиральные) и Б (биспи-ральные) наполняются аргоном с добавлением 12-16 % азота.

Конструктивно биспиральная лампа отличается от моноспи­ральной тем, что у нее нити имеют форму двойных спиралей, т. е. спирали, свитой из спирали. У этих ламп световая отдача примерно на 10 % выше, чем у обычных (моноспиральных) ламп.

Биспиральные лампы с криптоновым наполнением (лампы типа БК) внешне отличаются своей грибовидной формой и имеют световую отдачу на 10-20 % выше, чем лампы с аргоно­вым наполнением. Из-за высокой стоимости газа криптона лам­пы типа БК выпускаются мощностью от 40 до 100 Вт.

Заметим, что вольфрамовая нить накала может сворачиваться не только в спираль и биспираль, но и в триспираль и образовы­вать различные конструктивные формы (цилиндрическую, коль­цевую, прямоугольную и т. п.). Шкала номинальных мощностей ламп накаливания общего назначения (Вт): 15, 25, 40, 60, 75, 100, 150, 200, 300, 500, 750, 1000.

Лампы мощностью 15 и 25 Вт выпускаются вакуумными, 40- 100 Вт - биспиральными с аргоновым или криптоновым запол­нителем, 150 Вт - моноспиральными или биспиральными и 200 Вт и выше - моноспиральными с аргоновым заполнителем. Свето­вая отдача ламп 7-18 лм/Вт.

Для ламп мощностью от 15 до 200 Вт применяется цоколь ти­па Е27/27, для ламп мощностью 300 Вт с колбой длиной 184 мм - цоколь Е27/30, для ламп мощностью от 300 до 1000 Вт - цоколь Е40/45.

Лампы мощностью до 300 Вт могут изготавливаться как в прозрачных, так и в матированных (МТ), опаловых (О), молоч­ных (МЛ) колбах. Отметим, что опал - это минерал подкласса гидроокислов (SiO 2 x nH 2 O).

Условные обозначения ламп накаливания общего назначения: слово «лампа», тип наполнения и тела накала, вид колбы лампы (если она непрозрачная), диапазон напряжения, номинальная мощность, номер ГОСТа. Например, обозначение «Лампа В 125-135-25 ГОСТ 2239-79» расшифровывается так: лампа вакуумная, прозрачная колба на напряжение 125-135 В, мощность 25 Вт, изготовлена по ГОСТ 2239-79.

Обозначение «Лампа ГМТ 220-230-150 ГОСТ 2239-79» чита­ется следующим образом: лампа газонаполненная моноспираль­ная аргоновая в матированной колбе на напряжение 220-230 В, мощность 150 Вт, изготовлена по ГОСТ 2239-79.

Лампы накаливания для местного освещения изготавливаются на напряжение 12 В мощностью от 15 до 60 Вт и на напряжение 24 и 36 -В мощностью 25, 40, 60 и 100 Вт. Обозначение этих ламп, например МО-36-60 или МО-12-40, расшифровывается так: лампа накаливания для местного освещения напряжением 36 В мощностью 60 Вт и лампа накаливания для местного осве­щения напряжением 12 В мощностью 40 Вт. Кроме того, выпус­каются миниатюрные лампы накаливания типа МН на напряже­ние 1,25 В мощностью 0,313 Вт; 2,3 В мощностью 3,22 Вт; 2,5 В мощностью 0,725 Вт, 1,35 Вт, 2,8 Вт; 36 В мощностью 5,4 Вт. Световой поток ламп со временем может снижаться. Существуют нормы снижения светового потока каждой лампы после 750 ч работы при расчетном напряжении.

В последнее время широкое рас­пространение получили лампы нака­ливания, колбы которых покрыты зеркальным или белым диффузным отражающим слоем. Такие лампы называются лампами-светильниками. Зеркальной части колбы придают соответствующую форму с тем расче­том, чтобы получить определенную кривую силы света (рис. 2.2). Так как лампы с отражающими покрытиями имеют необходимую кривую силы света, для их применения использу­ются световые приборы без оптиче­ских устройств, что значительно удешевляет светильники к ним. Эти лампы не нуждаются в чистке, и их световой поток более стабилен в процессе эксплуатации.

Лампы накаливания с отражающими слоями (лампы-све­тильники) подразделяются на: лампы общего освещения с диф­фузным (Д) слоем типа НГД (лампы накаливания, газонапол­ненные аргоном, моноспиральные с диффузным слоем); лампы местного освещения с диффузным слоем типа МОД; лампы зер­кальные со средним (Г) светораспределением типа НЗС; лампы зеркальные с широким (Ш) светораспределением типа ЗН27- ЗН28; лампы зеркальные с концентрированным светораспреде­лением типа НЗК; лампы зеркальные для местного освещения типа МОЗ.

Лампы общего освещения с диффузным слоем типа НГД из­готавливаются на напряжение 127 В мощностью 20, 60, 100, 150 и 200 Вт и на напряжение 220 В мощностью 40, 100, 150, 200 и 300 Вт.

Лампы местного освещения с диффузным слоем типа МОД изготавливаются на напряжение 12 В мощностью 25, 40 и 60 Вт и на напряжение 36 В мощностью 40, 60 и 100 Вт.

Лампы зеркальные со средним (Г) светораспределителем типа НЗС выпускаются на напряжение 127 и 220 В мощностью 40, 60, 75 и 100 Вт.

Лампы зеркальные с широким (Ш) светораспределением типа ЗН30 выпускаются только на напряжение 220 В мощностью 300, 500, 750 и 1000 Вт.

Лампы зеркальные с концентрированным светораспределени­ем типа НЗК выпускаются на напряжение 127 и 220 В мощно­стью 40, 60, 75, 100, 150, 200, 300, 500, 750 и 1000 Вт. Срок служ­бы всех ламп на напряжение 220 В и ламп мощностью от 150 до 1000 Вт на напряжение 127 В составляет 1500 ч.

Лампы зеркальные для местного освещения типа МОЗ быва­ют только на напряжение 36 В мощностью 40, 60 и 100 Вт.

Срок службы всех ламп, не отмеченных выше, составляет 1000 ч. Световая отдача ламп 8,5-20, 6 лм/Вт.

Промышленность выпускает также галогенные лампы нака­ливания, срок службы которых составляет 2000 и более часов, т. е. в 2 раза больше, чем указанных выше ламп.

В состав газового заполнения колбы галогенной лампы нака­ливания добавляется йод, который при определенных условиях обеспечивает обратный перенос испарившихся частиц вольфрама со стенок колбы лампы на тело накала. Именно это обстоятельст­во позволяет повышать в 2 раза срок службы лампы накаливания при повышенной световой отдаче. Галогенные лампы имеют ли­нейные и компактные тела накала. Линейные тела накала выполне­ны в форме длинной спирали (отношение длины спирали к диа­метру более 10), которая помешается в кварцевую колбу трубчатой формы с торцовыми вводами. Компактные тела накала имеют спираль меньшей длины. У таких ламп также меньше и колба.

Обозначение галогенных ламп: КГ220-1000-5 - галогенная лампа с колбой из кварцевого стекла, йодная, напряжение 220 В, мощность 1000 Вт, номер разработки 5; КГМ (малогабаритная) на напряжение 30, 27 и 6 В.

Трубчатые галогенные лампы накаливания выпускаются на напряжение 220 В мощностью 1000, 1500, 2000, 5000 и 10 000 Вт, а также на напряжение 380 В мощностью 20 000 Вт. Световой поток галогенных ламп составляет от 22 клм (лампы мощностью 1000 Вт) до 260 клм (лампы мощностью 10 000 Вт). Световая от­дача этих ламп 22-26 лм/Вт.

Из-занестабильности напряжения питающей сети в настоя­щее время выпускаются лампы накаливания, допускающие от­клонение напряжения в диапазоне ±5 В от расчетного. Диапазон напряжений указывается на лампе, например 125-135 В, 215- 225 В, 220-230 В, 225-235 В, 230-240 В.

Для повышенного напряжения электрической сети выпуска­ются специальные лампы накаливания на расчетное напряжение 235 В и 240 В. Здесь диапазон изменения напряжения составляет 230-240 В и 235-245 В. Расчетное напряжение 240 В применя­ется только для ламп мощностью 60, 100 и 150 Вт. Лампы на на­пряжение 235 и 240 В не следует применять при стабильном на­пряжении сети 230 В из-за резкого уменьшения их светового по­тока в такой сети.

1.2. Люминесцентные лампы низкого давления

Люминесцентные трубчатые лампы низкого давления пред­ставляют собой запаянную с обоих концов стеклянную трубку, внутренняя поверхность которой покрыта тонким слоем люми­нофора. Из лампы откачан воздух, и она заполнена инертным га­зом аргоном при очень низком давлении. В лампу помещена капля ртути, которая при нагревании превращается в ртутные пары.

Вольфрамовые электроды лампы имеют вид небольшой спи­рали, покрытой специальным составом (оксидом), содержащим углекислые соли бария и стронция. Параллельно спирали распо­лагаются два никелевых жестких электрода, каждый из которых соединен с одним из концов спирали.

В люминесцентных лампах низкого давления плазма, состоя­щая из ионизированных паров металла и газа излучает как в ви­димых, так и в ультрафиолетовых частях спектра. С помощью люминофоров ультрафиолетовые лучи преобразуются в излуче­ние, видимое глазом.

Люминесцентные трубчатые лампы низкого давления с дуго­вым разрядом в парах ртути по цветности излучения подразде­ляются на лампы белого света (типа ЛБ), лампы тепло-белого света (ЛТБ), дневного света с исправленной цветностью (ЛДЦ).

Шкала номинальных мощностей люминесцентных ламп (Вт): 15, 20, 30, 40, 65, 80.

Особенности конструкции лампы указываются буквами вслед за буквами, обозначающими цветность лампы (Р - рефлек­торная, У - У-образная, К - кольцевая, Б - быстрого пуска, А - амальгамная).

В настоящее время выпускаются так называемые энергоэконо­мичные люминесцентные лампы, имеющие более эффективную конструкцию электродов и усовершенствованный люминофор. Это позволило изготавливать лампы с пониженной мощностью (18 Вт вместо 20 Вт, 36 Вт вместо 40 Вт, 58 Вт вместо 65 Вт), уменьшенным в 1,6 раза диаметром колбы и повышенной свето­вой отдачей.

Лампы белого света типа ЛБ обеспечивают наибольший све­товой поток из всех перечисленных типов ламп одной и той же мощности. Они приблизительно воспроизводят по цветности солнечный свет и применяются в помещениях, где от работаю­щих требуется значительное зрительное напряжение.

Лампы тепло-белого света типа ЛТБ имеют явно выраженный розовый оттенок и применяются тогда, когда есть необходимость подчеркнуть розовые и красные тона, например при цветопере­даче человеческого лица.

Цветность ламп дневного света типа ЛД близка к цветности ламп дневного света с исправленной цветностью типа ЛДЦ.

Лампы холодно-белого света типа ЛХБ по цветности занима­ют промежуточное положение между лампами белого света и дневного света с исправленной цветностью и в ряде случаев применяются.наравне с последними.

Средняя продолжительность горения люминесцентных ламп не менее 12000 ч.

Световой поток каждой лампы после 70 % средней продолжи­тельности горения должен быть не менее 70 % номинального светового потока.

Средняя яркость поверхности люминесцентных ламп колеб­лется от 6 до 11 кд/м 2 . Световая отдача ламп типа ЛБ составляет от 50,6 до 65,2 лм/Вт.

Люминесцентные лампы при включении их в сеть перемен­ного тока излучают переменный во времени световой поток. Ко­эффициент пульсации светового потока равен 23 % (у ламп типа ЛДЦ - 43 %). С увеличением номинального напряжения, свето­вой поток и мощность, потребляемые лампой, возрастают.

Выпускаются также эритемные и бактерицидные люминес­центные лампы. Их колбы изготавливаются из специального стекла, пропускающего ультрафиолетовые излучения. В эритемных лампах применяется специальный люминофор, преобразующий из­лучение ртутного разряда в ультрафиолетовое излучение с диапазо­ном длин волн, в наибольшей степени вызывающих загар (эритему) человеческой кожи. Такие лампы применяются в установках для искусственного ультрафиолетового облучения людей и животных. Бактерицидные лампы применяются в установках для обеззаражи­вания воздуха; у этих ламп люминофор отсутствует.

Люминесцентные лампы рассчитаны для нормальной работы при температуре окружающего воздуха +15...+40 °С. В случае понижения температуры давление аргона и ртутных паров резко понижается и зажигание, а также горение лампы ухудшаются.

Продолжительность работы лампы тем больше, чем меньшее количество раз она включается, т. е. чем меньше изнашивается оксидный слой электродов. Понижение напряжения, подводи­мого к лампе, а также понижение температуры окружающего воздуха способствуют более интенсивному износу оксида элек­тродов. При снижении напряжения на 10-15 % лампа может не зажечься или же ее включение будет сопровождаться многократ­ным миганием. Повышение напряжения облегчает процесс за­жигания лампы, но уменьшает ее светоотдачу.

Недостатки люминесцентных ламп: снижение коэффициента мощности электрической сети, создание радиопомех и стробо­скопического эффекта из-за пульсации светового потока и т. д.

Стробоскопический эффект состоит в создании у человека при люминесцентном освещении иллюзии того, что движущийся (вращающийся) с некоторой скоростью предмет находится в по­кое или движется (вращается) в противоположную сторону. В производственных условиях это опасно для жизни и здоровья людей. В то же время стробоскопический эффект применяется при проверке правильности работы электросчетчиков. На вра­щающемся диске электросчетчика имеются вдавленные углубле­ния (метки). Если смотреть сверху на диск, освещенный люми­несцентным светом, то в случае правильного хода диска создает­ся впечатление, что углубления (метки) находятся в покое.

Для устранения явлений стробоскопии, снижения радиопо­мех, улучшения коэффициента мощности применяются специ­альные схемы включения люминесцентных ламп.

1.3. Лампы люминесцентные высокого давления

Лампы ртутные высокого давления типа ДРЛ (дуговая ртутная люминесцентная) выпускаются мощностью 50, 80, 125, 175, 250, 400. 700, 1000 и 2000 Вт.

Лампа ДРЛ состоит из стеклянного баллона (колбы) эллипсо­идной формы, на внутренней поверхности которого нанесен слой люминофора - фторогерманата магния (или арсената маг­ния). Для поддержания стабильности свойств люминофора бал­лон заполнен углекислым газом. Внутри стеклянного баллона (колбы) находится трубка из кварцевого стекла, заполненная парами ртути под высоким давлением. Когда в трубке происхо­дит электрический разряд, его видимое излучение проходит че­рез слой люминофора, который, поглощая ультрафиолетовое из­лучение кварцевой разрядной трубки, превращает его в видимое излучение красного цвета.

Средняя продолжительность работы ламп ДРЛ составляет от 6000 ч (лампы мощностью 80 и 125 Вт) до 10 000 ч (лампы мощ­ностью 400 Вт и более).

Для ламп ДРЛ регламентируется также процентное содержа­ние красного излучения (6 и 10 %). Номинальное напряжение сети для всех ламп ДРЛ составляет 220 В. Коэффициент пульса­ции ламп ДРЛ 61-74 %.

К наиболее современным источникам света относятся металлогалогенные лампы, в ртутный разряд которых вводятся добав­ки йодидов натрия, таллия и индия с целью увеличения световой отдачи ламп. Металлогалогенные лампы типа ДРИ (дуговые ртутные йодидные) имеют колбы эллипсоидной или цилиндри­ческой формы, внутри которых размещается кварцевая цилин­дрическая горелка. Внутри этой горелки и происходит разряд в парах металлов и их йодидов.

Мощность ламп ДРИ составляет 250, 400, 700, 1000, 2000 и 3500 Вт. Световая отдача ламп ДРИ составляет 70-95 лм/Вт.

Световая отдача натриевых ламп высокого давления достигает 100-130 лм/Вт. У этих ламп внутри стеклянной цилиндрической колбы помещается разрядная трубка из пол и кристаллического оксида алюминия, инертная к парам натрия и хорошо пропус­кающая его излучение. Давление в трубке - порядка 200 кПа. При таком давлении резонансные линии натрия расширяются, занимая некоторую спектральную полосу, в результате чего цвет разряда становится более белым. Продолжительность работы ламп 10-15 тыс. часов.

Для освещения больших по площади территорий находят применение мощные (5, 10, 20 и 50 кВт) ксеноновые трубчатые безбалластные лампы типа ДКсТ. Они зажигаются с помощью пускового устройства, вырабатывающего высоковольтный (до 30 кВ) высокочастотный импульс напряжения, под воздействием которого в лампе возникает разряд в ксеноне.

Лампы мощностью 5 кВт имеют номинальное напряжение ПО В, мощностью 10 кВт - напряжение 220 В, мощностью 20 и 50 кВт - напряжение 380 В. Световая отдача этих ламп - от 17,6 до 32 лм/Вт.

2. Схемы питания люминесцентных ламп

Люминесцентные лампы включаются в сеть последовательно с индуктивным сопротивлением (дросселем), обеспечивающим стабилизацию переменного тока в лампе.

Дело в том, что электрический разряд в газе имеет неустойчи­вый характер, когда незначительные колебания напряжения вы­зывают резкое изменение тока в лампе.

Различают следующие схемы питания ламп: импульсного за­жигания, быстрого зажигания, мгновенного зажигания.

В схеме импульсного зажигания (рис. 1) процесс зажигания обеспечивается пускателем (стартером). Здесь вначале подогреваются электроды, затем возникает мгновенный импульс напряжения. Стартер представляет собой миниатюрную газоразрядную лампочку с двумя электродами. Колба лампочки заполнена инертным газом неоном. Один из электродов пускате­ля жесткий и неподвижный, а другой биметаллический, изги­бающийся при нагреве. В нормальном состоянии электроды пус­кателя разомкнуты. В момент включения схемы в сеть к элек­тродам лампы и пускателя прикладывается полное напряжение сети, так как ток в цепи лампы отсутствует и, следовательно, по­теря напряжения в дросселе равна нулю. Приложенное к элек­тродам стартера напряжение вызывает в нем газовый разряд, ко­торый в свою очередь обеспечивает прохождение тока неболь­шой силы (сотые доли ампера) через оба электрода лампы и дроссель. Под действием теплоты, выделяемой проходящим то­ком, биметаллическая пластина, изгибаясь, замыкает пускатель накоротко, в результате чего сила тока в цепи возрастает до 0,5- 0,6 А и электроды лампы быстро нагреваются. После замыкания электродов пускателя газовый разряд в нем прекращается, элек­троды остывают и затем размыкаются. Мгновенный разрыв тока в цепи вызывает появление электродвижущей силы самоиндук­ции в дросселе в виде пика напряжения, что и приводит к за­жиганию лампы, электроды которой к тому моменту оказывают­ся раскаленными. После зажигания лампы напряжение на ее за­жимах составляет около половины сетевого. Остальная часть на­пряжения гасится на дросселе. Напряжение, прикладываемое к пускателю (половина сетевого), оказывается недостаточным для его повторного срабатывания.

Рис. 1. Импульсная схема включения люминесцентной лампы в сеть:

1 – пускатель (стартер); 2 – лампа; 3 – дроссель.

В схеме быстрого зажигания (рис. 2) элек­троды ламп включены на отдельные обмотки специального накального трансформатора. При подаче напряжения на негорящую лампу потеря напряжения в дросселе будет невелика, по­вышение напряжения обмоток накала полностью приложено к электродам, которые быстро и сильно раскаляются, и лампа мо­жет зажечься при нормальном сетевом напряжении. В момент возникновения разряда в лампе сила тока накала пускорегулирующего аппарата автоматически уменьшается.

Рис. 2. Схема быстрого зажигания люминесцентной лампы:

1 – дроссель; 2 – лампа; 3 – накальный трансформатор.

В схеме мгновенного зажигания (рис. 3) используется дроссель-трансформатор и отдельный резонансный контур, создающий повышенное (в 6-7 раз больше рабочего) напряжение на лампе в момент включения. Схемы мгновенного зажигания применяются только в отдельных случаях, например во взрывоопасных помещениях с лампами, содержащими специ­альные усиленные электроды. Электроды ламп нормального ти­па в схеме, показанной на рис. 3, быстро изнашиваются. Высо­кое напряжение, подаваемое на лампу в начальный момент, представляет опасность для обслуживающего персонала.


Рис. 3. Схема мгновенного зажигания люминесцентной лампы

1 – лампа; 2 – конденсатор; 3 – дроссель-транформатор.

При работе дросселей возникает шум. Для обеспечения необ­ходимых силы тока и напряжения на зажимах лампы в пусковом и рабочих режимах, повышения коэффициента мощности, уменьше­ния стробоскопического эффекта и снижения уровня радиопомех к люминесцентным лампам придаются специальные пускорегулирующие аппараты. В состав пускорегулирующих аппаратов входят дроссели, конденсаторы (для повышения коэффициента мощно­сти и подавления радиопомех) и сопротивления, помещаемые в общий металлический кожух и заливаемые битумной массой.

По способу зажигания пускорегулирующие аппараты делятся на три группы: стартерного (условное обозначение УБ), быст­рого и мгновенного зажигания (условное обозначение АБ).

Основные типы пускорегулирующих аппаратов для люминес­центных ламп: 1УБИ-40/220-ВП-600У4 или 2УБИ-20/220-ВПП-110ХЛ4, что означает следующее: первая цифра указывает, какое количество ламп включается с аппаратом; УБ -стартерный пускорегулирующий аппарат; И - индуктивный сдвиг фаз потреб­ляемого аппаратом тока (может быть Е - емкостный или К - компенсированный, т. е. компенсирующий стробоскопический эффект); 40 и 20 - мощность лампы, Вт; 220 - напряжение пи­тающей сети, В; В - встроенный аппарат (может быть Н - независимый); П - с пониженным уровнем шума; ПП - с осо­бо низким уровнем шума; 600 и ПО - номер серии или моди­фикация пускорегулирующего аппарата; У и ХЛ - пускорегулирующий аппарат предназначен для эксплуатации в районах с умеренным или холодным климатом соответственно (может так­же быть ТВ - тропический влажный климат; ТС - тропический сухой климат; Т - тропический влажный и сухой; 0 - любой климат на суше); 4 - размещение в помещениях с искусственно регулируемым климатом (может быть 1 - на открытом воздухе; 2 - помещения, плохо изолированные от окружающего воздуха, и навесы; 3 - обычные естественно вентилируемые помещения; 5 - помещения с повышенной влажностью и невентилируемые подземные помещения).

Пускорегулирующие аппараты для дуговых ртутных люминес­центных ламп (ДРЛ), дуговых ртутных йодидных (ДРИ), натрие­вых ламп высокого давления (НЛВД) обозначаются так: 1ДБИ-400ДРЛ/220-Н или 1ДБИ-400ДНаТ/220-В. Здесь ДБ - дроссель балластный; ДРЛ и ДНаТ - тип лампы (ДНаТ означает то же, что и НЛВД); Н - независимый пускорегулирующий аппарат.

Электрическая схема стартерных двухламповых пускорегули­рующих аппаратов дана на рис. 4.

Рис. 4. Электрическая схема стартерного пускорегулирующего аппарата 2 УБИ для двух ламп

1 – дроссель; 2 – лампы; 3 – стартеры.

Пускорегулирующие аппараты для дуговых ртутных люминес­центных ламп типа ДРЛ выполняются с дросселем (рис. 5).


Рис.5. Схема включения ламп типа ДРЛ через дроссель.

1 – дроссель; 2 – лампа; С – конденсатор.

Для включения ламп ДРИ и ДНаТ применяются пускорегу­лирующие аппараты с унифицированными устройствами им­пульсного зажигания, основными элементами которых служат диодные тиристоры (рис. 6). Здесь, однако, повторное включе­ние погасшей не оборудованной специальным блоком мгновен­ного перезажигания лампы возможно только после ее остыва­ния, т. е. через 10-15 мин.


Рис.6 Схема включения ламп типа ДРИ или ДНаТ.

1 – импульсное зажигающее устройство; 2 – балластный дроссель

3. Основные светотехнические величины

Количество света, излучаемого источником, называется све­товым потоком и обозначается Ф. Единица светового потока - люмен (лм).

Световой поток, заключенный внутри телесного угла , в вершине которого расположен точечный источник света силой J, определяется по формуле Ф = J.

Сила света J - это плотность светового потока в том или ином направлении; измеряется в канделах (кд).

Кандела - это сила света, испускаемая с площади 1/600 000 м 2 сечения полного излучателя в перпендикулярном к этому сече­нию направлении, при температуре излучателя, равной темпера­туре затвердевания платины (2045 К), и давлении 101 325 Па.

Телесный угол в равен отношению площади поверхности о, вырезанной на сфере конусом с вершиной в точке S, к квадрату радиуса r (рис. 2.1). Если r = 1, то телесный угол численно ра­вен площади поверхности, вырезанной конусом на сфере еди­ничного радиуса. Единицей телесного угла служит стерадиан (ср).

Таким образом, люмен есть произведе­ние канделы на стерадиан. Освещение рабочей поверхности будет тем лучше, чем больший световой поток приходится на эту поверхность. Степень освещения поверх­ности, т. е. плотность светового потока на освещаемую поверхность, характеризуется освещенностью Е, которая измеряется в люксах (лк). Если на 1 м 2 какой-либо по­верхности падает световой поток, равный 1 лм, то освещенность Е будет 1 лк, т. е. лм/м 2 .

При освещении рабочей поверхности в ней выделяются свет­лые и темные детали, различающиеся своей яркостью I ., которая зависит не только от освещенности, но и от отражающих свойств поверхности. Яркость определяет световое ощущение, получае­мое глазами. Если яркость поверхности очень мала, на ней труд­но различать подробности, и наоборот, если яркость очень вели­ка, то поверхность слепит глаза. Яркость равна отношению силы света к площади проекции отражающего (излучающего) тела в заданном направлении; измеряется в канделах на метр квадрат­ный (кд/м 2).

4. Техника безопасности при обслуживании электроосветительных установок

Организация работы по технике безопасности на объектах электромонтажных работ предусматривает: назначение лиц, от­ветственных за безопасность работ (производитель работ, на­чальники участков, мастера и бригадиры монтажных бригад); инструктаж по безопасным методам работы на рабочих местах; вывешивание предупредительных плакатов, установку огражде­ний, назначение дежурных при выполнении монтажных работ, опасных для окружающих.

Все монтажные работы на токоведущих частях или вблизи них должны производиться при снятом напряжении.

При монтаже электроустановок применяются различные ма­шины, механизмы и приспособления, облегчающие труд рабо­чих-монтажников и обеспечивающие безопасные условия рабо­ты. Неумелое обращение с указанными средствами механизации может быть причиной травм.

В электромонтажной практике широко применяются специ­альные автомобили и передвижные мастерские. Так, спецавто­мобиль типа СК-А с прицепом предназначен для перевозки и прокладки кабеля в земляных траншеях. Для монтажа воздуш­ных линий используют телескопические вышки, оборудованные корзиной, в которой монтажник может быть поднят на высоту до 26 м. Для подъема опор и деталей конструкций воздушной ли­нии применяют стреловые краны на колесном и гусеничном ходу.

На электромонтажных работах используется электрифициро­ванный рабочий инструмент. По защитным мерам от поражения электрическим током электрифицированный ручной инструмент делится на 3 класса:

I класс - машины с изоляцией всех деталей, находящихся под напряжением; штепсельная вилка имеет заземляющий контакт;

II класс - машины, у которых все детали, находящиеся под напряжением, имеют двойную или усиленную изоляцию; эти машины не имеют устройств для заземления;

III класс - машины на номинальное напряжение не выше 42 В.

Номинальное напряжение машин переменного тока I и II классов не должно превышать 380 В.

К электрифицированному инструменту относятся:

Сверлильные ручные электрические машины как с коллек­торными однофазными двигателями на номинальное на­пряжение 220 В, так и с трехфазными асинхронными дви­гателями на номинальное напряжение 36 и 220 В;

Электромолоток, предназначенный для пробивки проемов и ниш в кирпичной кладке и бетоне при монтаже прохо­дов через стены и перекрытия, при установке групповых щитов и щитков в случае скрытой электропроводки (но­минальное напряжение электродвигателя 220 В);

Электроперфоратор, предназначенный для бурения глубо­ких отверстий диаметром до 32 мм в стенах и перекрытиях зданий из кирпича или бетона на глубину до 700 мм;

Электрический бороздодел, предназначенный для выруба­ния борозд в кирпичных стенах для прокладки проводов скрытой электропроводки (ширина вырубаемой борозды 8 мм при глубине 20 мм).

К работе с ручными электрическими машинами допускаются рабочие, прошедшие производственное обучение по технике безопасности. Каждая машина должна иметь инвентарный номер.

Ручные электрические машины запрещается применять во взрывоопасных помещениях, а также в помещениях с химически активной средой, разрушающей металл и изоляцию.

Машины, не защищенные от брызг, не разрешается приме­нять на открытых площадках во время дождя или снегопада.

Перед работой с машиной необходимо проверить комплект­ность и надежность крепления деталей, исправность кабеля (шну­ра) и штепсельной вилки, целостность изоляционных деталей корпуса, рукоятки и крышек щеткодержателей, наличие защит­ных кожухов, работу выключателя и работу машины на холостом ходу. При работе машин I. класса необходимо применять индиви­дуальные электрозащитные средства (диэлектрические перчатки).

Для смены режущего инструмента, регулировки, при пере­носке ручной машины и перерывах в работе ее необходимо от­ключать.

Запрещается работать ручной электрической машиной при наличии хотя бы одной из следующих неисправностей: повреж­дение штепсельного соединения, кабеля (шнура) или их защит­ной трубки; повреждение крышки щеткодержателя машины с коллекторным электродвигателем; нечеткая работа выключателя; появление дыма, кругового огня на коллекторе, резкого запаха горелой изоляции; вытекание смазки; повышенный стук, шум, вибрация; поломка или появление трещин в корпусе, рукоятке либо защитном ограждении; поломка режущего инструмента.

Работы по монтажу воздушных линий электропередачи (сети наружного освещения) связаны с подъемом людей и материалов на высоту с помощью грузоподъемных машин и механизмов. При этом возникает опасность травмирования в случае падения с опор или других конструкций, а также поражения током мол­нии при работе во время грозы или наведенным напряжением от соседних линий.

Во время опускания нижнего конца опоры в котлован никто из рабочих не должен в нем находиться. Подъем на опору дол­жен осуществляться с помощью телескопической вышки, мон­терских когтей, лазов, лестниц. Во избежание ушибов и ранений в результате падения с высоты деталей и инструмента запреща­ется находиться под опорой и корзиной вышки во время произ­водства работ, не разрешается сбрасывать какие-либо предметы с высоты опоры.

При раскатке голого провода с барабана рабочий должен ра­ботать в брезентовых рукавицах. На время работ по монтажу ли­ний протяженностью более 3 км смонтированные участки про­водов необходимо замыкать накоротко и заземлять на случай по­явления на данном участке наведенного напряжения от соседних линий или от грозового облака.

Для прокладки кабеля по стенам или конструкциям здания на высоте 2 м и более следует применять прочные подмостки с ог­раждением в виде перил и бортовой доски (у настила). Не раз­решается прокладка кабеля с лестниц. Подъем кабеля для креп­ления его на опорных устройствах кабельной конструкции на высоту более 2 м необходимо производить с помощью рогаток и ручных блоков. На углах поворота кабельной линии не следует при раскатке оттягивать кабель руками. При прогреве кабеля в зимнее время электрическим током напряжением 220 В его обо­лочка должна быть заземлена во избежание электротравм в слу­чае замыкания токоведущей жилы на стальную броню или алю­миниевую (свинцовую) оболочку.

На первый взгляд кажется, что светодиодная лампа – это обычный источник света. Чтобы она работала, ее достаточно вкрутить в патрон и готово. На самом деле это не так. Такие лампы имеют сложное устройство и бывают разных видов. Чтобы они бесперебойно работали, надо знать их технические характеристики и по ним подбирать подходящую модель.

Светодиодные лампы классифицируются по нескольким признакам, указывающим на их технические характеристики. В частности – это ее назначение, конструкция и тип цоколя. Чтобы иметь лучшее представление о разновидностях, давайте рассмотрим каждый признак отдельно.

Назначение

По назначению светодиодные лампы можно разделить на следующие виды:

  • для освещения жилой постройки. Часто дома используется с цоколем E27, E14;
  • модели, используемые в дизайнерской подсветке;
  • для обустройства наружной освещенности. Это может быть подсветка архитектурных строений или элементов ландшафтного дизайна;
  • для освещенности участка во взрывоопасной среде;
  • модели уличного освещения;
  • много светодиодных ламп используется в прожекторах. Они применяются для освещенности промышленных территорий и зданий.

Конструкция

По типу конструкции светодиодные лампы разделяют на следующие виды:

  • модели общего назначения используются для освещенности офисных и жилых помещений;
  • светодиодная лампа с направленным потоком света устанавливается в прожекторах. Их используют для подсветки элементов архитектурных строений и освещения ландшафта;
  • заменить люминесцентные источники света призваны линейные модели. Эти светодиодные лампы изготовлены в форме трубки и подходят по типу цоколя, что дает возможность быстро заменить один источник света на другой.

Цоколь

У светодиодных ламп, в зависимости от их назначения, существуют разные типы цоколей. В основном встречаются такие разновидности:

  1. Стандартные цоколи с буквенным обозначением «Е» указывают на резьбовой тип. Цифры обозначают диаметр цоколя, например, Е27. Резьбовой цоколь светодиодных ламп идентичен цоколю традиционных источников света с нитью накала. Это легко позволяет их заменять дома в люстрах, настольных моделях, а также в приборах уличного освещения, установленных на столбах. В использовании дома распространены лампы со стандартным цоколем, имеющим обозначение Е27 или Е14. Другое название у Е14 – миньон. Уличное освещение с опор требует использование более мощных светодиодных ламп. Большой размер колбы естественно имеет больший цоколь – Е40.
  2. Разъем GU10 состоит из 2 штырьков с утолщением на концах. Конструкция цоколя идентична разъемам стартеров, используемых в старых источниках дневного света (газоразрядных). Светодиодная лампа с таким цоколем имеет поворотный тип крепления в патроне. Буквенное обозначение разъема указывает, что G – штырьковый тип, U – наличие утолщения концов. Цифра обозначает расстояние между штырьками. В данном случае – это 10 мм. Штырьковый цоколь отличается электробезопасностью и простотой установки. Лампа со штырьковым разъемом в основном предназначена для потолочных светильников с рефлектором.
  3. Аналогичный разъем GU5.3 имеет тот же штырьковый тип с расстоянием между элементами 5,3 мм. Этот тип разъема для светодиодных ламп запустили в производство с увеличением спроса на галогенные источники света с таким же разъемом, устанавливаемые в потолочных приборах освещения. Модели с таким цоколем подходят для точечного освещения, устанавливаемого в подвесные потолки. Цоколь легко вставляется в патрон и является таким же электробезопасным.
  4. У линейных светодиодных изделий в форме трубы установлен цоколь G13. Это тот же штырьковый тип с расстоянием между элементами 13 мм. Такие модели трубчатой формы применяют для замены люминесцентных источников света. Их используют для улучшения освещенности больших площадей, а также устанавливают в помещениях с высокими потолками большой протяженности.
  5. Цоколь GX53 имеет расстояние между штыревыми элементами 53 мм. Лампы с таким разъемом применяют в накладных и встраиваемых светильниках для мебели и потолка.

Таблица типов цоколей

Излучаемый свет

Свет, который излучает светодиодная лампа, также относится к признакам классификации изделия и указывает его технические характеристики.

Световой поток

Одним из важных параметров, который определяет технические характеристики источника света, является световой поток, то есть мощность его излучения и эффективность. Единицей измерения потока света служит люмен. Второй параметр – эффективность, определяет отношение мощности первого параметра к потребляемой мощности источника света Лм/Вт. В принципе, этот показатель отражает экономичность.

Чтобы сравнить светимость светодиодов с обычной нитью накала надо учесть, что источник света мощностью, например, 40 Вт создает световой поток около 400 Лм. Существуют таблицы для сравнения светового потока разных источников света. Из них можно выяснить, что у светодиодных ламп световой поток в десять раз мощнее, чем у обычного источника света.

Покупая для дома лампу, надо изучать маркировку. Добросовестные производители указывают светоотдачу или мощность светового потока. Но, чаще всего, в маркировке встречаются сравнительные характеристики светодиодного источника света по отношению к аналогу с нитью накала. Особенно такие обозначения больше всего присутствуют на упаковке китайских изделий. Вообще, такую маркировку тоже можно считать верной, хотя она больше несет рекламный характер.

Надо подытожить, что со временем светодиоды вырабатывают свой ресурс, уменьшая мощность светового потока. Это указывает на их недостатки, хотя вечного ничего нет.

Светодиодные лампы отличаются от традиционных источников света с нитью накала цветопередачей. Нить накала создает один цвет теплого оттенка – желтый. Светодиоды способны излучать свет широкого диапазона цветовой гаммы, который определяется шкалой температуры цвета.

За основу при построении шкалы взят цвет раскаленного металла. Единицей измерения служат градусы Кельвина. Например, желтый цвет раскаленного металла имеет температуру 2700 о К. Температура дневного освещения колеблется в пределах от 4500 до 6000 о К. Хотя белый свет у нижней границы имеет желтоватый оттенок. Все цвета с температурой выше 6500 о К относятся к холодному свету с голубым оттенком. Выбирая для помещения светодиодный источник света, на такие характеристики надо обращать особое внимание. Кроме того, что при освещенности помещения в разном цвете показывается внутренний вид его убранства, некоторые оттенки могут негативно влиять на зрение человека. Усталость глаз подчеркивает недостатки LED освещения, но это легко исправить правильным подбором цветопередачи.

Светораспределение

Если обычные источники света создают максимум освещенности пространства вокруг себя, то светодиоды имеют направление светового потока в одну сторону. Они излучают свет впереди себя. Такое светораспределение подойдет для ночника или другого прибора освещения, от которого требуется направленный пучок света.

Чтобы светодиоды производили равномерную освещенность пространства, их комплектуют рассеивателем. Также равномерного распределения света добиваются путем установки светодиодов на плоскости под разными углами. Все эти методы позволяют создать равномерное распределение света на определенную площадь. Например, светодиодные лампы могут иметь распространение светового потока под углом 60 или 120 о.

Цветопередача

Существует индекс цветопередачи, обозначаемый Ra. Показатель отвечает за естественность цвета предмета, попадающего в поле освещенности определенного источника света. Эталоном индекса является солнечный свет, приравниваемый к показателю 100. Светодиодные лампы имеют индекс 80-90 Ra. Для сравнения, обычная лампа накаливания обладает показателем не менее 90 Ra. Принято считать, что индекс, превышающий 80 Ra, является высоким.

Регулируемые лампы

Светодиодные лампы, так же как и источники света с нитью накала, поддаются регулировке яркости свечения. Управляет свечением светодиодов регулирующий прибор – диммер. Это указывает на достоинства светодиодных ламп, в отличие от их экономных собратьев – люминесцентных источников света. С помощью регулятора можно добиться освещенности помещения, наиболее благоприятного для зрения.

Работа регулятора заключается в формировании импульсов. От их частоты зависит яркость свечения светодиода. Но не все светодиодные лампы являются диммируемыми. Ограничить регулировку может встроенный в лампу драйвер для светодиода, работающий на определенной частоте. Выбирая источник света для дома, надо тщательно прочитать технические характеристики изделия, где на упаковке будет указано, является ли светодиодная лампа диммируемой.

Мощность и рабочее напряжение ламп

Читая технические характеристики на упаковке изделия, многие в первую очередь обращают внимание на такие показатели, как потребляемая мощность и рабочее напряжение. Другими словами, человек желает узнать, какой ток необходим лампе для нормальной ее работы и сколько при этом она израсходует электроэнергии.

Показатель потребляемой мощности играет важную роль в расчете общего потребления освещения дома или улицы. Светодиодные лампы производят разной мощности, в зависимости от их назначения. Например, для дома достаточно будет приобрести изделия мощностью от 3 до 20 Вт. Для обустройства уличного освещения понадобятся более мощные лампы, например, около 25 Вт. Но главное то, что по потребляемой мощности определить яркость свечения не удастся.

Данные для замены ламп накаливания на светодиодные

Другим важным показателем является рабочее напряжение. Источник тока бывает постоянный или переменный. Светодиодам требуется постоянное напряжение 12 V. За их работу отвечает драйвер, который преобразует напряжение сети до необходимых норм. С их помощью светодиодные лампы могут работать от переменного тока напряжением 220 V. Существуют модели, работающие от постоянного и переменного тока напряжением 12–24V. Эти показатели надо учитывать при выборе ламп. Иначе изделие с несоответствующими показателями при подключении к сети откажется работать или просто перегорит.

Маркировка LED ламп

Если взять упаковку любого изделия, то на ней есть маркировка, отражающая все его технические данные. Она схожа с маркировкой экономок и включает следующие параметры:


Правильно подобранный по всем параметрам светодиодный источник света при соблюдении всех требований завода-изготовителя гарантированно прослужит долгие годы. Сейчас основные недостатки изделий заключаются только в высокой стоимости, но со временем они станут доступны всем потребителям.