Как работает клиент серверное приложение. Таким образом, все вышеперечисленные недостатки файл-серверной схемы устраняются в архитектуре клиент-сервер. Технология клиент-сервер

Преимущества

  • Делает возможным, в большинстве случаев, распределение функций вычислительной системы между несколькими независимыми компьютерами в сети. Это позволяет упростить обслуживание вычислительной системы. В частности, замена, ремонт, модернизация или перемещение сервера не затрагивают клиентов.
  • Все данные хранятся на сервере, который, как правило, защищён гораздо лучше большинства клиентов. На сервере проще обеспечить контроль полномочий, чтобы разрешать доступ к данным только клиентам с соответствующими правами доступа.
  • Позволяет объединить различные клиенты. Использовать ресурсы одного сервера часто могут клиенты с разными аппаратными платформами, операционными системами и т. п.

Недостатки

  • Неработоспособность сервера может сделать неработоспособной всю вычислительную сеть.
  • Поддержка работы данной системы требует отдельного специалиста - системного администратора.
  • Высокая стоимость оборудования.

Многоуровневая архитектура клиент-сервер - разновидность архитектуры клиент-сервер, в которой функция обработки данных вынесена на один или несколько отдельных серверов. Это позволяет разделить функции хранения, обработки и представления данных для более эффективного использования возможностей серверов и клиентов.

Частные случаи многоуровневой архитектуры:

Сеть с выделенным сервером

Сеть с выделенным сервером (англ. Client/Server network ) - это локальная вычислительная сеть (LAN) , в которой сетевые устройства централизованы и управляются одним или несколькими серверами. Индивидуальные рабочие станции или клиенты (такие, как ПК) должны обращаться к ресурсам сети через сервер(ы).

Литература

Валерий Коржов Многоуровневые системы клиент-сервер . Издательство Открытые системы (17 июня 1997). Архивировано из первоисточника 26 августа 2011. Проверено 31 января 2010.


Wikimedia Foundation . 2010 .

Клиент-серверное приложение на потоковом сокете TCP

В следующем примере используем TCP, чтобы обеспечить упорядоченные, надежные двусторонние потоки байтов. Построим завершенное приложение, включающее клиент и сервер. Сначала демонстрируем, как сконструировать на потоковых сокетах TCP сервер, а затем клиентское приложение для тестирования нашего сервера.

Следующая программа создает сервер, получающий запросы на соединение от клиентов. Сервер построен синхронно, следовательно, выполнение потока блокируется, пока сервер не даст согласия на соединение с клиентом. Это приложение демонстрирует простой сервер, отвечающий клиенту. Клиент завершает соединение, отправляя серверу сообщение .

Сервер TCP

Создание структуры сервера показано на следующей функциональной диаграмме:

Вот полный код программы SocketServer.cs:

// SocketServer.cs using System; using System.Text; using System.Net; using System.Net.Sockets; namespace SocketServer { class Program { static void Main(string args) { // Устанавливаем для сокета локальную конечную точку IPHostEntry ipHost = Dns.GetHostEntry("localhost"); IPAddress ipAddr = ipHost.AddressList; IPEndPoint ipEndPoint = new IPEndPoint(ipAddr, 11000); // Создаем сокет Tcp/Ip Socket sListener = new Socket(ipAddr.AddressFamily, SocketType.Stream, ProtocolType.Tcp); // Назначаем сокет локальной конечной точке и слушаем входящие сокеты try { sListener.Bind(ipEndPoint); sListener.Listen(10); // Начинаем слушать соединения while (true) { Console.WriteLine("Ожидаем соединение через порт {0}", ipEndPoint); // Программа приостанавливается, ожидая входящее соединение Socket handler = sListener.Accept(); string data = null; // Мы дождались клиента, пытающегося с нами соединиться byte bytes = new byte; int bytesRec = handler.Receive(bytes); data += Encoding.UTF8.GetString(bytes, 0, bytesRec); // Показываем данные на консоли Console.Write("Полученный текст: " + data + "\n\n"); // Отправляем ответ клиенту\ string reply = "Спасибо за запрос в " + data.Length.ToString() + " символов"; byte msg = Encoding.UTF8.GetBytes(reply); handler.Send(msg); if (data.IndexOf("") > -1) { Console.WriteLine("Сервер завершил соединение с клиентом."); break; } handler.Shutdown(SocketShutdown.Both); handler.Close(); } } catch (Exception ex) { Console.WriteLine(ex.ToString()); } finally { Console.ReadLine(); } } } }

Давайте рассмотрим структуру данной программы.

Первый шаг заключается в установлении для сокета локальной конечной точки. Прежде чем открывать сокет для ожидания соединений, нужно подготовить для него адрес локальной конечной точки. Уникальный адрес для обслуживания TCP/IP определяется комбинацией IP-адреса хоста с номером порта обслуживания, которая создает конечную точку для обслуживания.

Класс Dns предоставляет методы, возвращающие информацию о сетевых адресах, поддерживаемых устройством в локальной сети. Если у устройства локальной сети имеется более одного сетевого адреса, класс Dns возвращает информацию обо всех сетевых адресах, и приложение должно выбрать из массива подходящий адрес для обслуживания.

Создадим IPEndPoint для сервера, комбинируя первый IP-адрес хост-компьютера, полученный от метода Dns.Resolve(), с номером порта:

IPHostEntry ipHost = Dns.GetHostEntry("localhost"); IPAddress ipAddr = ipHost.AddressList; IPEndPoint ipEndPoint = new IPEndPoint(ipAddr, 11000);

Здесь класс IPEndPoint представляет localhost на порте 11000. Далее новым экземпляром класса Socket создаем потоковый сокет. Установив локальную конечную точку для ожидания соединений, можно создать сокет:

Socket sListener = new Socket(ipAddr.AddressFamily, SocketType.Stream, ProtocolType.Tcp);

Перечисление AddressFamily указывает схемы адресации, которые экземпляр класса Socket может использовать для разрешения адреса.

В параметре SocketType различаются сокеты TCP и UDP. В нем можно определить в том числе следующие значения:

Dgram

Поддерживает дейтаграммы. Значение Dgram требует указать Udp для типа протокола и InterNetwork в параметре семейства адресов.

Raw

Поддерживает доступ к базовому транспортному протоколу.

Stream

Поддерживает потоковые сокеты. Значение Stream требует указать Tcp для типа протокола.

Третий и последний параметр определяет тип протокола, требуемый для сокета. В параметре РrotocolType можно указать следующие наиболее важные значения - Tcp, Udp, Ip, Raw.

Следующим шагом должно быть назначение сокета с помощью метода Bind() . Когда сокет открывается конструктором, ему не назначается имя, а только резервируется дескриптор. Для назначения имени сокету сервера вызывается метод Bind(). Чтобы сокет клиента мог идентифицировать потоковый сокет TCP, серверная программа должна дать имя своему сокету:

SListener.Bind(ipEndPoint);

Метод Bind() связывает сокет с локальной конечной точкой. Вызывать метод Bind() надо до любых попыток обращения к методам Listen() и Accept().

Теперь, создав сокет и связав с ним имя, можно слушать входящие сообщения, воспользовавшись методом Listen() . В состоянии прослушивания сокет будет ожидать входящие попытки соединения:

SListener.Listen(10);

В параметре определяется задел (backlog) , указывающий максимальное число соединений, ожидающих обработки в очереди. В приведенном коде значение параметра допускает накопление в очереди до десяти соединений.

В состоянии прослушивания надо быть готовым дать согласие на соединение с клиентом, для чего используется метод Accept() . С помощью этого метода получается соединение клиента и завершается установление связи имен клиента и сервера. Метод Accept() блокирует поток вызывающей программы до поступления соединения.

Метод Accept() извлекает из очереди ожидающих запросов первый запрос на соединение и создает для его обработки новый сокет. Хотя новый сокет создан, первоначальный сокет продолжает слушать и может использоваться с многопоточной обработкой для приема нескольких запросов на соединение от клиентов. Никакое серверное приложение не должно закрывать слушающий сокет. Он должен продолжать работать наряду с сокетами, созданными методом Accept для обработки входящих запросов клиентов.

While (true) { Console.WriteLine("Ожидаем соединение через порт {0}", ipEndPoint); // Программа приостанавливается, ожидая входящее соединение Socket handler = sListener.Accept();

Как только клиент и сервер установили между собой соединение, можно отправлять и получать сообщения, используя методы Send() и Receive() класса Socket.

Метод Send() записывает исходящие данные сокету, с которым установлено соединение. Метод Receive() считывает входящие данные в потоковый сокет. При использовании системы, основанной на TCP, перед выполнением методов Send() и Receive () между сокетами должно быть установлено соединение. Точный протокол между двумя взаимодействующими сущностями должен быть определен заблаговременно, чтобы клиентское и серверное приложения не блокировали друг друга, не зная, кто должен отправить свои данные первым.

Когда обмен данными между сервером и клиентом завершается, нужно закрыть соединение используя методы Shutdown() и Close() :

Handler.Shutdown(SocketShutdown.Both); handler.Close();

SocketShutdown - это перечисление, содержащее три значения для остановки: Both - останавливает отправку и получение данных сокетом, Receive - останавливает получение данных сокетом и Send - останавливает отправку данных сокетом.

Сокет закрывается при вызове метода Close(), который также устанавливает в свойстве Connected сокета значение false.

Клиент на TCP

Функции, которые используются для создания приложения-клиента, более или менее напоминают серверное приложение. Как и для сервера, используются те же методы для определения конечной точки, создания экземпляра сокета, отправки и получения данных и закрытия сокета.

Являются неравноправными составляющими информационной сети. Одни владеют каким-то ресурсом, поэтому называются серверами, другие обращаются к этим ресурсам и называются клиентами. Рассмотрим, как же они взаимодействуют между собой и что собой представляет клиент-серверная архитектура.

Клиент-серверная архитектура

Архитектура «Клиент-Сервер» представляет собой взаимодействие структурных компонентов в сети на основе определенных данной сети, где структурными компонентами являются сервер и узлы-поставщики определенных специализированных функций (сервисов), а также клиенты, которые пользуются данным сервисом. Специфические функции принято делить на три группы на основе решения определенных задач:

  • функции ввода и представления данных предназначены для взаимодействия пользователя с системой;
  • прикладные функции - для каждой имеется собственный набор;
  • функции управления ресурсами предназначены для управления файловой системой, различными базами данных и прочими компонентами.

Например, компьютер без сетевого подключения, представляет компоненты представления, прикладного назначения и управления на различных уровнях. Такого рода уровнями считаются операционная система, прикладное и служебное программное обеспечение, различные утилиты. Точно так же и в сети представлены все вышеуказанные компоненты. Главное - правильно обеспечить сетевое взаимодействие между этими составляющими.

Принцип работы клиент-серверной архитектуры

Клиент-серверная архитектура наиболее часто используется для создания корпоративных баз данных, в которых информация не только хранится, но и периодически поддается обработке различными методами. Именно база данных является главным элементом любой корпоративной информационной системы, а на сервере располагается ядро этой базы. Так, на сервере происходят наиболее сложные операции, касающиеся ввода, хранения, обработки и модификации данных. Когда пользователь (клиент) обращается к базе данных (серверу), происходит обработка запроса: непосредственно обращение к базе данных и возврат ответа (результата обработки). Результат обработки - это сообщение сети об успешном проведении операции или ошибке. Серверные компьютеры могут обрабатывать одновременно обращение нескольких клиентов к одному и тому же файлу. Такая работа и по сети позволяет ускорить работу используемых приложений.

Клиент-серверная архитектура: применение технологии

Данная архитектура используется для доступа к различным ресурсам с использованием сетевых технологий: баз данных, почтовые серверы, файрволы, прокси-серверы. Разработка клиент-серверных приложений позволяет повысить безопасность, надежность и производительность используемых приложений и сети в целом. Наиболее часто клиент-серверные приложения используются для автоматизации бизнеса.

Ранее были рассмотрены локальные базы данных, когда и БД, и взаимодейст­вующее с ней приложение располагаются на одном компьютере. В данном разделе будут рассмотрены некоторые особенности работы с удаленными БД, используе­мыми в сети, где приложение и БД располагаются на разных компьютерах.

В принципе локальную БД тоже можно использовать для коллективного доступа т. е. в сетевом варианте. В этом случае файлы базы данных и приложение для ра­боты с ней располагаются на сервере сети. Пользователь запускает со своего ком­пьютера находящееся на сервере приложение, при этом у него запускается копия приложения. Можно установить приложение и непосредственно на компьютере пользователя, в этом случае приложению должно быть известно местонахождение общей БД, заданное, например, через псевдоним. Подобный сетевой вариант использования локальной БД соответствует архитектуре "файл-сервер".

Достоинствами сетевой архитектуры "файл-сервер" являются простота разработ­ки и эксплуатации БД и приложения. Разработчик фактически создает локальную БД и приложение, которые затем просто используются в сетевом варианте. При этом не требуется дополнительное программное обеспечение для организации работы с БД. Однако архитектуре "файл-сервер" свойственны и существенные недостатки. Для работы с данными используется навигационный способ доступа, при этом по сети циркулируют большие объемы данных. В результате сеть оказы­вается перегруженной, что является причиной ее низкого быстродействия и плохой производительности при работе с БД. Требуется синхронизация работы отдельных пользователей, связанная с бло­кировкой в таблицах тех записей, которые редактирует другой пользователь. Приложения не только обрабатывают данные, но и управляют самой базой данных. В связи с тем, что управление БД осуществляется с разных компью­теров, затрудняются управление доступом, соблюдение конфиденциальности и поддержание целостности БД.

Из-за этих недостатков архитектура "файл-сервер", как правило, используется в небольших сетях. Для сетей с большим количеством пользователей предпочти­тельным вариантом (а порой и единственным возможным) является архитектура "клиент-сервер".В сетевой архитектуре "клиент-сервер" БД размешается на компьютере-сервере сети (сервере или удаленном сервере) и называется также удаленной БД. Приложение, осуществляющее работу с этой БД, находится на компьютере пользо­вателя. Приложение пользователя является клиентом, его также называют приложением-клиентом. Клиент и сервер взаимодействуют следующим образом. Клиент формирует и отсылает запрос серверу, на котором размешена БД. Сервер вы­полняет запрос и выдает клиенту в качестве результатов требуемые данные. Таким образом, в архитектуре "клиент-сервер" клиент посылает запрос и полу­чает только те данные, которые ему действительно нужны. Вся обработка запро­са выполняется на удаленном сервере. К достоинствам такой архитектуры отно­сятся следующие факторы. Для работы с данными используется реляционный способ доступа, что сни­жает нагрузку на сеть. Приложения не управляют напрямую базой, управлением занимается только сервер. В связи с этим можно обеспечить высокую степень защиты данных. В приложении отсутствует код, связанный с управлением БД, поэтому приложения упрощаются.

Отметим, что сервером называют не только компьютер, но и специальную про­грамму, которая управляет БД. Так как в основе организации обмена данными между клиентом и сервером лежит язык SQL такую программу еще называют SQL-сервером, а базу данных - базой данных SQL. В широком смысле слова под сервером понимают компьютер, программу и саму базу данных. SQL-серверами являются промышленные СУБД, такие как InterBase, Oracle и др. Каждый из серверов имеет свои преимущества и осо­бенности, связанные, например, со структурой БД и реализацией языка SQL, которые необходимо учитывать при разработке приложения. Далее мы будем понимать под сервером программу (т. е. SQL -сервер), а установленную на компьютере-сервере базу данных будем называть удаленной БД.

При работе в архитектуре "клиент-сервер" приложение должно:

· устанавливать соединение с сервером и завершать его;

· формировать и отсылать запрос серверу, получая от него результаты выпол­нения запроса;

· обрабатывать полученные данные.

При этом обработка данных не имеет принципиальных отличий по сравнению с обработкой данных в локальных БД.

Удаленная БД, как и локальная, представляет собой совокупность взаимосвязанных таблиц. Однако данные этих таблиц, как правило, содержатся в одном общем файле. Как и в случае с локальной БД, для таблиц удаленной БД могут устанавливаться связи (отношения), ограничения ссылочной целостности, огра­ничения на значения столбцов и т. д. Для удаленных БД поле называется столбцом. Для управления БД сервер использует:

· триггеры;

· генераторы;

· хранимые процедуры;

· функции, определяемые пользователем;

· механизм транзакций;

· механизм кэшированных изменений;

Многие из перечисленных элементов обеспечиваются возможностями языка SQL сервера, в котором, по сравнению с локальной версией, имеются сущест­венные особенности, рассматриваемые ниже.

Система Delphi обеспечивает разработку приложений для различных серверов, предоставляя для этого соответствующие средства. Отметим, что многие опи­санные ранее принципы разработки приложений и средства для работы с ло­кальными БД относятся и к работе с удаленными БД. В частности, для разра­ботки приложений используются такие компоненты, как источник данных DataSource,_наборыданныхTable,ADOTable, SQLTable, IBTable, Query, ADOQuery, SQLQuery, сетка DBGrid и др.

Для реализации реляционного способа доступа к удаленной БД с помощью BDE не­обходимо использовать только средства языка SQL. Поэтому в качестве компонен­тов должны выбираться такие как Query, StoredProc, UpdateSQL. Кроме того, для набора данных нельзя использовать методы, характерные для навигационного способа доступа.

Напомним, что если при выполнении модифицирующего БД запроса с помо­щью компонента Query не нужен результирующий набор данных, то этот за­прос предпочтительнее выполнять с помощью метода ExecSQL. Для работы с таблицами и запросами по-прежнему можно использовать такие программы, как Database Desktop и SQL Explorer.

Средства Delphi, предназначенные для работы с удаленными БД, можно разде­лить на два вида: инструменты и компоненты.

К инструментам относятся специальные программы и пакеты, обеспечивающие обслуживание БД вне разрабатываемых приложений. Среди них:

· InterBase Server Manager - программа управления запуском сервера InterBase;

· IBConsole - консоль сервера InterBase;

· SQL Monitor - программа отслеживания порядка выполнения SQL-запросов к удаленным БД.

Компоненты предназначены для создания приложений, выполняющих операции с удаленной БД. Перечислим наиболее важные из них:

· Database (соединение с БД);

· Session (текущий сеанс работы с БД);

· StoredProc (вызов хранимой процедуры);

· UpdateSQL (модификация набора данных, основанного на SQL-запросе);

· DCOMConnection(DСОМ-соединение);

· компоненты страниц АDО, dbExpress, Interbase Палитры компонентов.

Отметим, что многие из названных компонентов, например, Database, Session, UpdateSQL, используются также при работе с локальными БД. Так, компонент Database позволяет, реализовать механизм транзакций при навигационном способе доступа к данным с помощью механизма ВDЕ. Однако наиболее часто эти компоненты применяются именно при работе с удаленными базами. Часть компонентов, например, клиентский набор данных ClientDataSet и со­единение с сервером DCOMConnection, предназначена для работы в трехуровне­вой (трехзвенной) архитектуре "клиент-сервер" ("тонкий" клиент) и используется для построения сервера приложений.

В основе операций, выполняемых с удаленными БД как с помощью инструмен­тов, так и программно, лежит язык SQL. Например, при создании таблицы с помощью программы IBConsole необходимо набрать и выполнить SQL-запрос (инструкцию) Create Table. Если создание таблицы с помощью механизма ВDЕ осуществляется из приложения пользователя, то для этой цели используется набор данных Query, который выполняет такой же за­прос. Основное различие заключается в том, каким образом выполняется SQL-запрос к удаленной БД.

Итак, для удаленных БД разница между средствами, используемыми в приложении, и инструментами намного меньше, чем для локальных баз данных.

Сервер InterBase. Все серверы имеют похожие принципы организации данных и управления ими. В качестве примера рассмотрим работу с сервером InterBase 6.x, который явля­ется "родным" для_Delphi. Совместно с Delphi поставляются две части сервера InterBase 6.x: серверная и клиентская. Серверная часть InterBase является локальной версией сервера InterBase и ис­пользуется для отладки приложений, предназначенных для работы с удаленны­ми БД, позволяя на одном компьютере проверить их в сетевом варианте. После отладки на локальном компьютере приложение можно перенести на сетевые компьютеры без изменений, для чего нужно:

· скопировать БД на сервер;

· установить для приложения новые параметры соединения с удаленной БД.

Скопировать БД можно с помощью программ типа Проводник Windows. Клиентская часть нужна для обеспечения доступа приложения к удаленной БД.При разработке БД и приложений с использованием локальной версии сервера InterBase нужно иметь в виду, что она имеет ряд ограничений и может не под­держивать, например, механизм событий сервера или определяемые пользовате­лем функции. Полнофункциональная версия сервера InterBase приобретается и устанавливается отдельно от Delphi.Как упоминалось, в основе работы с удаленной БД лежат возможности языка SQL, обеспечивающие соответствующие операции. Назначение и возможности языка SQL для удаленных БД в принципе совпадают с назначением и возмож­ностями этого языка для локальных БД.

Бизнес-правила . Как отмечалось, бизнес-правила представляют собой механизмы управления БД и предназначены для поддержания БД в целостном состоянии. Кроме того, они нужны для реализации ограничений БД, а также для выполнения ряда других действий, например, накапливания статистики работы с БД.

Бизнес-правила можно реализовывать на физическом и программном уровнях. В первом случае эти правила (например, ограничение ссылочной целостности для связанных таблиц) задаются при создании таблиц и входят в структуру БД. Для этого в синтаксис инструкции Create Table включаются соответствующие операнды, например, Default (значение по умолчанию). В дальнейшей работе нельзя нарушить или обойти ограничение, заданное на физическом уровне.

На программном уровне бизнес-правила можно реализовать в сервере и в при­ложении. Причем эти бизнес-правила не должны быть определены на физиче­ском уровне. Для реализации бизнес-правил в сервере обычно используются триггеры. Достоинствами такого подхода является то, что вычислительная на­грузка по управлению БД целиком ложится на сервер, что снижает нагрузку на приложение и сеть, а также то, что действие ограничений распространяется на все приложения, осуществляющие доступ к БД. Однако одновременно снижается гибкость управления БД. Кроме того, нужно учитывать, что средства отладки триггеров и хранимых процедур сервера развиты недостаточно хорошо.

Для программирования бизнес-правил в приложении используются компоненты и их средства. Достоинство такого подхода заключается в легкости изменения бизнес-правил и возможности определить правила "своего" приложения. Недос­татком является снижение безопасности БД, связанное с тем, что каждое при­ложение может устанавливать свои правила управления БД.

Информация всей БД сервера InterBase хранится в одном файле с расширением gdb. Размер этого файла может составлять единицы и даже десятки гигабайт. Отметим, что аналогичный размер БД имеет СУБД Microsoft SOL Server, в то время как для более мощных СУБД Oracle и SyBase размер БД достигает десят­ков и сотен гигабайт.

В отличие от локальной БД, структуру которой составляли таблицы (отдельные или связанные), удаленная БД имеет более сложную структуру, которая включа­ет в свой состав следующие элементы: таблицы, триггеры,индексы, функции пользователя. ограничения, хранимые процедуры, домены, просмотры, генераторы, исключения, привилегии.

Элементы структуры удаленной БД также называют метаданными. Слово "мета" имеет смысл "над", т. е. метаданные представляют собой данные, которые опи­сывают структуру БД. Для InterBase максимальное число таблиц в БД равно 65 536, а максимальное число столбцов в таблице - 1000. Отметим, что таблицы InterBaseимеют мень­шее число допустимых типов столбцов (полей), чем таблицы локальных БД Paradox.

Домен представляет собой именованное описание столбца. После определения домена его имя можно использовать для описания других столбцов.Аналогом домена является тип данных.

Просмотр является логической (виртуальной) таблицей, записи в которую отобраны с помощью инструкции Select. Преимущество просмотра в том, что один раз отобрав записи их можно использовать в дальнейшем без повторного выполнения Select. Это выгодно при частом выполнении одинаковых запросов.

Хранимая процедура представляет собой подпрограмму, расположенную на сервере и вызываемую из приложения клиента. Использование этих объектов увеличивает скорость доступа к БД по следующим причинам:

· вместо текста запроса серверу передается по сети короткое обращение к хранимой процедуре;

· хранимая процедура не требует предварительной синтаксической проверки.

Триггер представляет собой процедуру, которая находится на сервере БД и вызывается автоматически при модификации записей БД, т.е. при изменении столбцов или при их удалении и добавлении. В отличие от хранимых процедур триггеры нельзя вызвать из приложения клиента, а также передавать им параметры и получать от них результаты.

Функция, определяемая пользователем, представляет собой обычную функцию, написанную на алгоритмическом языке, например, Pascal. Созданная функция оформляется в виде динамической библиотеки DLL, откуда может быть вызвана обычным способом. Для обеспечения вызова функции системе Windows должен быть известен путь к соответствующей библиотеке. Использование таких функций расширяет состав функций языка SQL.

Механизм кэшированных изменений заключается в том, что на компьютере клиента в кэше (буфере) создается локальная копия данных, и все изменения в данных выполняются в этой копии. Для хранения локальной копии используется специальный буфер (кэш). Сделанные изменения можно подтвердить, перенеся их в основную БД, хранящуюся на сервере, или отказаться от них. Этот меха­низм напоминает механизм транзакций, но, в отличие от него, снижает нагрузку на сеть, т. к. все изменения передаются в основную БД одним пакетом. Следует иметь к виду, что для всех записей локальной копии отсутствуют блокировки на изменение их значений. Блокировки могут быть установлены другими приложе­ниями для основной БД, находящейся на сервере.Механизм кэшированных изменений реализуется в приложении, для чего компоненты, в первую очередь Database, Table и Query (используемые при доступе с помощью BDE), имеют соответствующие средства. Кроме того, механизм кэшированных изменений поддерживается предназначенным для этого компонен­том UpdateSQL.Основные достоинства рассматриваемого механизма проявляются для удален­ных БД, но его можно использовать и при работе с локальными БД.

Привилегии представляют собой права доступа к БД. Управление привилегиями заключается в их установке и удалении. После создания объекта БД (например, таблицы) доступ к ней разрешен только создателю и системному администрато­ру, имеющему имя SYSDBA. Для доступа к БД остальных пользователей им нуж­но назначить соответствующие привилегии. Сразу после появления нового пользователя, созданного например, с помощью программы InterBase Manager Server , этот пользователь имеет минимальные права доступа: ему разрешено только войти в БД (соединиться с ней), указав свое имя и пароль, однако ни один объект этой БД ему не доступен. Чтобы обеспечить возможность активной работы с БД, нужно определить (переопределить) привилегии.

Установку привилегий выполняет инструкция Grant. Привилегии позволяют разграничить доступ к таблицам и просмотрам со сторо­ны пользователей. При этом под "пользователем" понимается любой объект, обращающийся к данным. Кроме собственно пользователя (приложения), таки­ми объектами могут быть таблицы, просмотры, хранимые процедуры и тригге­ры. Если привилегия предоставляется одновременно нескольким пользователям, то их имена перечисляются через запятую.

Архитектура клиент - сервер (client-server architecture) - это концепция информационной сети, в которой основная часть ее ресурсов сосредоточена в серверах, обслуживающих своих клиентов. Рассматриваемая архитектура определяет два типа компонентов: серверы и клиенты .

Сервер - это объект, предоставляющий сервис другим объектам сети по их запросам. Сервис - это процесс обслуживания клиентов.

Рисунок Архитектура клиент - сервер

Сервер работает по заданиям клиентов и управляет выполнением их заданий. После выполнения каждого задания сервер посылает полученные результаты клиенту, пославшему это задание.

Сервисная функция в архитектуре клиент - сервер описывается комплексом прикладных программ, в соответствии с которым выполняются разнообразные прикладные процессы.

Процесс, который вызывает сервисную функцию с помощью определенных операций, называется клиентом . Им может быть программа или пользователь. Клиенты - это рабочие станции, которые используют ресурсы сервера и предоставляют удобные интерфейсы пользователя . Интерфейсы пользователя это процедуры взаимодействия пользователя с системой или сетью.

Рисунок Модель клиент-сервер

Клиент является инициатором и использует электронную почту или другие сервисы сервера. В этом процессе клиент запрашивает вид обслуживания, устанавливает сеанс, получает нужные ему результаты и сообщает об окончании работы.

В сетях с выделенным файловым сервером на выделенном автономном ПК устанавливается серверная сетевая операционная система . Этот ПК становится сервером. Программное обеспечение (ПО ), установленное на рабочей станции, позволяет ей обмениваться данными с сервером. Наиболее распространенные сетевые операционная системы:

Помимо сетевой операционной системы необходимы сетевые прикладные программы, реализующие преимущества, предоставляемые сетью.

Сети на базе серверовимеют лучшие характеристики и повышенную надежность. Сервервладеет главными ресурсами сети,к которым обращаются остальные рабочие станции.

В современной клиент - серверной архитектуре выделяется четыре группы объектов: клиенты, серверы, данные и сетевые службы. Клиенты располагаются в системах на рабочих местах пользователей. Данные в основном хранятся в серверах. Сетевые службы являются совместно используемыми серверами и данными. Кроме того службы управляют процедурами обработки данных.

Сети клиент - серверной архитектуры имеют следующие преимущества:

Позволяют организовывать сети с большим количеством рабочих станций;

Обеспечивают централизованное управление учетными записями пользователей, безопасностью и доступом, что упрощает сетевое администрирование;


Эффективный доступ к сетевым ресурсам;

Пользователю нужен один пароль для входа в сеть и для получения доступа ко всем ресурсам, на которые распространяются права пользователя.

Наряду с преимуществами сети клиент - серверной архитектуры имеют и ряд недостатков:

Неисправность сервера может сделать сеть неработоспособной, как минимум потерю сетевых ресурсов;

Требуют квалифицированного персонала для администрирования;

Имеют более высокую стоимость сетей и сетевого оборудования.