Как очистить кэш браузера и зачем это нужно? Что такое кэш браузера

Инструкция

Папка, в которой расположены временные файлы интернета, по умолчанию имеет в компьютере атрибут «скрытая». Для того чтобы найти кэш-память , надо включить показ скрытых файлов и папок. Нажмите «Пуск» → «Панель управления» → «Свойства папок», выберите раздел «Вид» и в нем вариант «Показывать скрытые файлы и папки». Затем нажмите «ОК».

В браузере Windows Internet Explorer войдите в настройки браузера через значок шестеренки, расположенный справа наверху страницы. Перейдите к «Свойствам обозревателя», в раздел «Общие» → « История просмотра», выберите «Параметры». В окне с параметрами нажмите «Показать файлы». Откроется список файлов, сохраняемых обозревателем в своей кэш-памяти .

Чтобы найти путь к файлам в Mozilla Firefox, введите в адресную строку браузера about:cache. Откроется окно с информацией о кэше, в разделе Cache Directory и будет указан нужный путь. Скопируйте его и затем вставьте в строку поиска проводника Windows. Открывшийся список файлов и будет содержимым кэш-памяти Mozilla Firefox.

Для браузера Opera путь к кэшу будет зависеть от операционной системы вашего компьютера. Если у вас установлена Windows XP, кэш будет расположен по адресу C:Documents and SettingsИмя пользователяLocal SettingsApplication DataOperaOperacachesesn. А в Windows7 кэш содержится в папке C:UsersИмя пользователяAppDataLocalOperaOperacachesesn.

Полезный совет

Для Internet Explorer папку с интернет-файлами можете найти через проводник - отыщите на компьютере папку, которая так и называется - Temporary Internet Files.

Кэш браузера Mozilla Firefox находится в папке Default. Вы можете найти ее через путь C:\Users\Имя пользователя\AppData\Local\Mozilla\Profiles\xxxxx.default.

Источники:

  • Как очистить кэш и историю браузера
  • как найти кэш браузера

Вы часто смотрите фильмы и ролики онлайн. Хочется их каким-то образом сохранить. Бывает так, что ресурс, на котором вы их смотрите, не допускает скачивания. Это не помеха, ведь можно сохранить их на жестком диске вашего компьютера, используя кэш браузера. Как это сделать, читайте далее.

Инструкция

Запустите браузер. Затем перейдите на сайт, где вы смотрите ролики или . Чтобы скопировать кэш, нужно знать в какую папку он сохраняется. Откройте программу «Проводник» или альтернативную ей, например Total Comander. Перейдите в директорию, в которой установлен ваш браузер.

Найдите папку кэш. Все ролики, которые вы просматриваете в интернете, автоматически сохраняются в эту папку. По окончании просмотра, происходит их автоматическое удаление. Существует ошибочное мнение, что для содержания файлов в кэше браузера используются ресурсы оперативной памяти. Если речь идет о ролике длительностью примерно 20 минут, это логично, но когда вы смотрите фильмы, продолжительность которых может достигать и трех часов, то разумно было бы предположить, что данная информация, могла бы просто перегрузить оперативную память и привести к зависанию компьютера.

После того, как ролик или фильм будет полностью загружен, скопируйте его и переместите в другую директорию. Чтобы его потом можно было просмотреть, переименуйте его, присвоив в конце расширение swf. Данная подходит не только для копирования мультимедийного продукта, но и для любой другой информации, которая временно сохраняется в папке кэш.

Если у вас не получилось обнаружить эту папку вручную, проследите ее адрес с помощью настроек вашего браузера. Для этого нажмите на панели инструментов пункт «Справка», в нем выберите «О программе». Появится список. В нем выберите пункт «Блок пути». Затем, чтобы быстрее найти директорию, нажмите Ctrl+F и введите слово кэш. Затем нажмите кнопку Enter. В списке выберите пункт, который отражает месо нахождения ранее упомянутой папки на вашем жестком диске.

Мало кто знает о том, что на посещенные сайты можно зайти и в автономном режиме, открыв страницы, которые вы уже посещали, из кэша браузера. Однако, даже если человек помнит о наличии кэша, у него не всегда получается открыть посещенную когда-то страницу в оффлайн-режиме по причине невозможности поиска нужной страницы кэша. Если же вам хочется сохранить какой-то сайт, полностью просмотренный в сети, на компьютер, то перспектива извлекать все его элементы из кэша тоже радует далеко не всех. Тем не менее, есть хороший способ сохранять кэш браузера в виде сайтов – это программа HTML Converter 2.0.

Инструкция

Запустите HTML Converter и в разделе Cache type укажите тип вашего браузера. После этого в разделе Cache folder укажите путь , в которой содержится кэш. В последнюю очередь укажите destination folder – папку назначения, в которой будет сохранен результат работы.

Установите галочки у параметров Convert Java commands, links to local references, detect index pages.

Если вы хотите сохранить на жестком диске все сайты, имеющиеся в кэше, поставьте галочку на пункте «Загрузить все веб-сайты». Нажмите Convert и выберите в открывшемся окне те сайты из предложенного списка, которые вы хотите сохранить. Подтвердите нужные сайты и ждите результата.

Видео по теме

Источники:

  • Здрасте, как сохранять кэш музыки в ВК на сд карту?, Андроид

Веселее идти в путь, когда попутчик - опытный товарищ. Но как найти такого в неизвестной местности и не нарваться на неприятности? Слишком много развелось повсюду желающих заработать, не разбирающихся как следует в своем деле. А ведь от этого зависит безопасность.

Инструкция

Составьте перечень качеств идеального проводника . Для этого проанализируйте сделанные записи. Подумайте, что еще вы хотели бы . Например, вы желаете любоваться местными красотами в и потому проводник должен быть молчаливым. Или он непременно должен уметь оказывать первую , потому что вы не уверены, как подействует местный климат на вашего сына.

Обратитесь к неофициальным источникам информации. Можно поговорить с местными жителями. Хорошо бы найти туристов, которые ранее пользовались такими услугами. Получите от них контакты возможных проводников.

Сделайте окончательный выбор. Протестируйте каждого кандидата по вашему перечню идеального проводника . Можно устроить что-то вроде собеседований. Серьезно подходите к этому вопросу, чтобы не было разочарований.

Обратите внимание

Не перекладывайте всю ответственность на проводника. Позаботьтесь, чтобы о вашем пути знали родственники и служащие отеля, в котором вы остановились. В жизни бывают разные ситуации.

Будьте благоразумны и берите с собой все необходимое, даже если вас убедили, что путь абсолютно безопасен. Подумайте о запасе воды, пищи, о необходимых предметах на случай особых обстоятельств.

Полезный совет

Может оказаться, что вы проведете в дороге в 3 раза дольше времени, чем планировали. Что изменится для вас, если так случится? Смоделируйте эту ситуацию заранее, приведите в порядок необходимые дела, возьмите с собой дополнительные вещи. Мыслите так, будто вы сами - главный проводник.

Источники:

  • Где находится Проводник в Windows и для чего он предназначен

Кэш представляет собой временную память браузера, туда сохраняются картинки, анимации с загружаемых веб-страничек. Как найти эту информацию и где она хранится на компьютере?

Вам понадобится

  • - компьютер с доступом в интернет;
  • - браузер.

Инструкция

Найдите рабочую папку браузера. Кэш представляет собой обыкновенную папку, в которой хранятся временные файлы. Она и будет носить название cache. Если вы используете операционную систему Linux, откройте домашний каталог пользователя, перейдите в папку браузера. К примеру, если используется браузер Опера, папку с кэшем можно найти здесь: ~/.opera/cache/. Если используется Firefox стоит провести в папке mozilla/firefox/[случайный номер профиля].default/Cache/.

Откройте следующую папку, если используете операционную систему windows XP и браузер Опера, чтобы найти месторасположение кэша: C:\Documents and Settings\[имя пользователя]\Local Settings\Application Data\Opera\Opera [версия]\cache. Если у вас браузер Firefox, значит откройте адрес C:\Documents and Settings\[имя пользователя]\Local Settings\Application Data\Mozilla\Firefox\Profiles\[случайный номер профиля].default\Cache.

Зайдите в папку и вы увидите огромное количество файлов, которые названы бессмысленно и вам эти названия ни о чем не говорят. В файлах кэша нет расширений. Если вы используете операционную систему Linux, то большая часть файлов будет опознана файловой системой, и вы увидите соответствующие значки. В операционной системе Windows такого нет, поэтому вам будет сложнее опознать нужный вам файл из кэша. Но это можно выполнить не только по наименованию и расширения файла. Если вы хотите найти кэш, чтобы вытащить из него картинку или видеозапись, зайдите в папку, в которой он хранится, сразу же после просмотра изображения или видеозаписи на веб-страничке. В папке с кэшем выставьте режим просмотра «Таблица» и отсортируйте информацию по дате изменения. Также можно выполнить сортировку по размеру. Обычно временные файлы очень маленькие, а нужные вам, к примеру, изображения или видеозаписи, будут весить значительно больше.

Используйте инструменты браузеров, к примеру, введите в адресной строке браузера Opera команду Opera:cache, и он будет представлен на экране. Здесь произведите поиск по нужным критериям (тип файла, размер). Также будет отображен источник данного файла. Для того чтобы просмотреть кэш в браузере Mozilla Firefox, наберите в адресной строке команду about:cache.

Обратите внимание

Ответ: а)в браузере Internet Explorer щёлкнуть правой кнопкой мыши по значку IE на рабочем столе, нажать "Свойства" и нажать на кнопку "Удалить файлы". б)в браузере Mozilla FireFox в меню нажать Инструменты => Настройки, вкладка "Дополнительно", далее "Сеть" и "Очистить кэш".

Полезный совет

Кэш браузера - это копии веб-страниц, уже просмотренных пользователем. При попытке повторного просмотра этих страниц браузер (или прокси-сервер) уже не будет запрашивать их с веб-сервера, а извлечет из кэша. Применение кэша снижает нагрузку на сеть и повышает скорость загрузки страниц. Более подробную информацию о кэше браузера вы сможете найти в Яндексе.

Папка кеш является промежуточным буфером обмена с оперативной памятью. Посредством кеш а осуществляется быстрый доступ к необходимым данным операционной системы и улучшается общая производительность компьютера.

Инструкция

В операционной системе Windows существует специальная папка Тemp. Она находится на диске С:WindowsTemp, это папка для хранения временных файлов системы. Эти файлы можно удалять вручную, но грамотнее это с помощью специальной программы, например CCleaner.

Существует также файл подкачки, который, по сути, является кеш ем системы. Он используется, когда не хватает оперативной памяти. Получить к нему доступ обычному пользователю невозможно и нет необходимости. Свой кеш есть также , доступ к нему невозможен.

Каждый браузер использует свою кеш папку . В нее сохраняются различные элементы посещаемых вами веб-страниц. Это могут быть картинки, флеш-анимация и т.п. Сохранение осуществляется для того чтобы ускорить все последующие загрузки данных страниц.

Периодически кеш папки браузеров необходимо очищать. Это можно делать вручную, либо поставить соответствующие настройки в программе, чтобы очищение происходило при закрытии браузера.

Во встроенном браузере Windows – Internet Explorer папка кеш а находится по адресу: C:Documents and SettingsПользовательLocal SettingsTemporary Internet Files.

Диаграмма кэша памяти ЦПУ

Кэш - это память с большей скоростью доступа, предназначенная для ускорения обращения к данным, содержащимся постоянно в памяти с меньшей скоростью доступа (далее «основная память»). Кэширование применяется ЦПУ , жёсткими дисками , браузерами и веб-серверами .

Кэш состоит из набора записей. Каждая запись ассоциирована с элементом данных или блоком данных (небольшой части данных), которая является копией элемента данных в основной памяти. Каждая запись имеет идентификатор , определяющий соответствие между элементами данных в кэше и их копиями в основной памяти.

Когда клиент кэша (ЦПУ, веб-браузер, операционная система) обращается к данным, прежде всего исследуется кэш. Если в кэше найдена запись с идентификатором, совпадающим с идентификатором затребованного элемента данных, то используются элементы данных в кэше. Такой случай называется попаданием кэша . Если в кэше не найдено записей, содержащих затребованный элемент данных, то он читается из основной памяти в кэш, и становятся доступным для последующих обращений. Такой случай называется промахом кэша . Процент обращений к кэшу, когда в нём найден результат, называется уровнем попаданий или коэффициентом попаданий в кэш.

Например, веб-браузер проверяет локальный кэш на диске на наличие локальной копии веб-страницы, соответствующей запрошенному URL. В этом примере URL - это идентификатор, а содержимое веб-страницы - это элементы данных.

Если кэш ограничен в объёме, то при промахе может быть принято решение отбросить некоторую запись для освобождения пространства. Для выбора отбрасываемой записи используются разные алгоритмы вытеснения .

При модификации элементов данных в кэше выполняется их обновление в основной памяти. Задержка во времени между модификацией данных в кэше и обновлением основной памяти управляется так называемой политикой записи .

В кэше с немедленной записью каждое изменение вызывает синхронное обновление данных в основной памяти.

В кэше с отложенной записью (или обратной записью ) обновление происходит в случае вытеснения элемента данных, периодически или по запросу клиента. Для отслеживания модифицированных элементов данных записи кэша хранят признак модификации (изменённый или «грязный» ). Промах в кэше с отложенной записью может потребовать два обращения к основной памяти: первое для записи заменяемых данных из кэша, второе для чтения необходимого элемента данных.

В случае, если данные в основной памяти могут быть изменены независимо от кэша, то запись кэша может стать неактуальной . Протоколы взаимодействия между кэшами, которые сохраняют согласованность данных, называют протоколами когерентности кэша .

Кэш центрального процессора

Ряд моделей центральных процессоров (ЦП) обладают собственным кэшем, для того чтобы минимизировать доступ к оперативной памяти (ОЗУ), которая медленнее, чем регистры . Кэш-память может давать значительный выигрыш в производительности, в случае когда тактовая частота ОЗУ значительно меньше тактовой частоты ЦП. Тактовая частота для кэш-памяти обычно ненамного меньше частоты ЦП.

Уровни кэша

Кэш центрального процессора разделён на несколько уровней. Для универсальных процессоров - до 3. Кэш-память уровня N+1 как правило больше по размеру и медленнее по скорости обращения и передаче данных, чем кэш-память уровня N.

Самой быстрой памятью является кэш первого уровня - L1-cache. По сути, она является неотъемлемой частью процессора, поскольку расположена на одном с ним кристалле и входит в состав функциональных блоков. Состоит из кэша команд и кэша данных. Некоторые процессоры без L1 кэша не могут функционировать. На других его можно отключить, но тогда значительно падает производительность процессора. L1 кэш работает на частоте процессора, и, в общем случае, обращение к нему может производиться каждый такт (зачастую является возможным выполнять даже несколько чтений/записей одновременно). Латентность доступа обычно равна 2−4 тактам ядра. Объём обычно невелик - не более 128 Кбайт.

Вторым по быстродействию является L2-cache - кэш второго уровня. Обычно он расположен либо на кристалле, как и L1, либо в непосредственной близости от ядра, например, в процессорном картридже (только в слотовых процессорах). В старых процессорах - набор микросхем на системной плате. Объём L2 кэша от 128 Кбайт до 1−12 Мбайт. В современных многоядерных процессорах кэш второго уровня, находясь на том же кристалле, является памятью раздельного пользования - при общем объёме кэша в 8 Мбайт на каждое ядро приходится по 2 Мбайта. Обычно латентность L2 кэша, расположенного на кристалле ядра, составляет от 8 до 20 тактов ядра. В отличие от L1 кэша, его отключение может не повлиять на производительность системы. Однако, в задачах, связанных с многочисленными обращениями к ограниченной области памяти, например, СУБД , производительность может упасть в десятки раз.

Кэш третьего уровня наименее быстродействующий и обычно расположен отдельно от ядра ЦП, но он может быть очень внушительного размера - более 32 Мбайт. L3 кэш медленнее предыдущих кэшей, но всё равно значительно быстрее, чем оперативная память. В многопроцессорных системах находится в общем пользовании.

Отключение кэша второго и третьего уровней обычно используется в математических задачах, например, при обсчёте полигонов, когда объём данных меньше размера кэша. В этом случае, можно сразу записать все данные в кэш, а затем производить их обработку.

Ассоциативность кэша

Одна из фундаментальных характеристик кэш-памяти - уровень ассоциативности - отображает её логическую сегментацию. Дело в том, что последовательный перебор всех строк кэша в поисках необходимых данных потребовал бы десятков тактов и свёл бы на нет весь выигрыш от использования встроенной в ЦП памяти. Поэтому ячейки ОЗУ жёстко привязываются к строкам кэш-памяти (в каждой строке могут быть данные из фиксированного набора адресов), что значительно сокращает время поиска. С каждой ячейкой ОЗУ может быть связано более одной строки кэш-памяти: например, n -канальная ассоциативность (англ. n -way set associative ) обозначает, что информация по некоторому адресу оперативной памяти может храниться в n местах кэш-памяти.

При одинаковом объеме кэша схема с большей ассоциативностью будет наименее быстрой, но наиболее эффективной.

Кэширование внешних накопителей

Многие периферийные устройства хранения данных используют кэш для ускорения работы, в частности, жёсткие диски используют кэш-память от 1 до 32 Мбайт (модели с поддержкой одновременно и имеет смысл прочитать блок один раз, затем хранить одну копию блока в оперативной памяти для всех процессов;

  • доступ к некоторым блокам оперативной памяти происходит гораздо чаще, чем к другим, поэтому использование кэширования для таких блоков в целом увеличивает производительность системы;
  • для некоторых блоков памяти внешних накопителей не требуется непосредственной записи после модификации, и использование кэша для таких блоков оптимизирует использование ввода-вывода.
  • Кэширование, выполняемое операционной системой

    Кэш оперативной памяти состоит из следующих элементов:

    1. набор страниц оперативной памяти, разделённых на буферы, равные по длине блоку данных соответствующего устройства внешней памяти;
    2. набор заголовков буферов, описывающих состояние соответствующего буфера;
    3. хеш-таблицы , содержащей соответствие номера блока заголовку;
    4. списки свободных буферов.

    Алгоритм работы кэша с отложенной записью

    Изначально все заголовки буферов помещаются в список свободных буферов. Если процесс намеревается прочитать или модифицировать блок, то он выполняет следующий алгоритм:

    1. пытается найти в хеш-таблице заголовок буфера с заданным номером;
    2. в случае, если полученный буфер занят, ждёт его освобождения;
    3. в случае, если буфер не найден в хеш-таблице, берёт первый буфер из хвоста списка свободных;
    4. в случае, если список свободных буферов пуст, то выполняется алгоритм вытеснения (см. ниже);
    5. в случае, если полученный буфер помечен как «грязный», выполняет асинхронную запись содержимого буфера во внешнюю память.
    6. удаляет буфер из хеш-таблицы, если он был помещён в неё;
    7. помещает буфер в хеш-таблицу с новым номером.

    Процесс читает данные в полученный буфер и освобождает его. В случае модификации процесс перед освобождением помечает буфер как «грязный». При освобождении буфер помещается в голову списка свободных буферов.

    Таким образом:

    1. если процесс прочитал некоторый блок в буфер, то велика вероятность, что другой процесс при чтении этого блока найдёт буфер в оперативной памяти;
    2. запись данных во внешнюю память выполняется только тогда, когда не хватает «чистых» буферов, либо по запросу.

    Алгоритм вытеснения

    Если список свободных буферов пуст, то выполняется алгоритм вытеснения буфера. Алгоритм вытеснения существенно влияет на производительность кэша. Существуют следующие алгоритмы:

    1. LRU (Least Recently Used) - вытесняется буфер, неиспользованный дольше всех;
    2. MRU (Most Recently Used) - вытесняется последний использованный буфер;
    3. LFU (Least Frequently Used) - вытесняется буфер, использованный реже всех;
    4. ARC (англ.) (Adaptive Replacement Cache) - алгоритм вытеснения, комбинирующий LRU и LFU, запатентованный

      Программное кэширование

      Политика записи при кэшировании

      При чтении данных кэш-память даёт однозначный выигрыш в производительности. При записи данных выигрыш можно получить только ценой снижения надёжности. Поэтому в различных приложениях может быть выбрана та или иная политика записи кэш-памяти..

      Существуют две основные политики записи кэш-памяти - сквозная запись (write-through) и отложенная запись (write-back).

      • сквозная запись подразумевает, что при изменении содержимого ячейки памяти, запись происходит синхронно и в кэш и в основную память.
      • отложенная запись подразумевает, что можно отложить момент записи данных в основную память, а записать их только в кэш. При этом данные будут выгружены в оперативную память только в случае обращения к ним какого либо другого устройства (другой ЦП, контроллер DMA) либо нехватки места в кэше для размещения других данных. Производительность, по сравнению со сквозной записью, повышается, но это может поставить под угрозу целостность данных в основной памяти, поскольку программный или аппаратный сбой может привести к тому, что данные так и не будут переписаны из кэша в основную память. Кроме того, в случае кэширования оперативной памяти, когда используются два и более процессоров, нужно обеспечивать согласованность данных в разных кэшах.

      Кэширование интернет-страниц

      В процессе передачи информации по сети может использоваться кэширование интернет-страниц - процесс сохранения часто запрашиваемых документов на (промежуточных) прокси-серверах или машине пользователя, с целью предотвращения их постоянной загрузки с сервера-источника и уменьшения трафика . Таким образом, информация перемещается ближе к пользователю. Управление кэшированием осуществляется при помощи CMS конкретного сайта для снижения нагрузки на сервер при большой посещаемости. Кэширование может производится как в память, так и в файловый кэш (

    Кэш[или кеш (англ. cache, от фр.
    Размещено на реф.рф
    cacher - прятать; произносится - кэш) - промежуточный буфер с быстрым доступом, содержащий информацию, которая с наибольшей вероятностью должна быть запрошена быстродействующей памятью, к примеру оперативной. Доступ к данным в кэше идёт быстрее, чем выборка исходных данных из медленной памяти (внешней) или их перевычисление, за счёт чего уменьшается среднее время доступа.

    Впервые слово ʼʼкэшʼʼ в компьютерном контексте было использовано в 1967 году во время подготовки статьи для публикации в журнале ʼʼIBM Systems Journalʼʼ. Статья касалась усовершенствования памяти в разрабатываемой модели 85 из серии IBM System/360. Редактор журнала Лайл Джонсон попросил придумать более описательный термин, нежели ʼʼвысокоскоростной буферʼʼ, но из-за отсутствия идей сам предложил слово ʼʼкэшʼʼ. Статья была опубликована в начале 1968 года, авторы были премированы IBM, их работа получила распространение и впоследствии была улучшена, а слово ʼʼкэшʼʼ вскоре стало использоваться в компьютерной литературе как общепринятый термин.

    Функционирование

    Диаграмма кэша памяти ЦПУ

    Кэш - это память с большей скоростью доступа, предназначенная для ускорения обращения к данным, содержащимся постоянно в памяти с меньшей скоростью доступа (далее ʼʼосновная памятьʼʼ). Кэширование применяется ЦПУ, жёсткими дисками, браузерами и веб-серверами.

    Кэш состоит из набора записей. Каждая запись ассоциирована с элементом данных или блоком данных (небольшой части данных), которая является копией элемента данных в основной памяти. Каждая запись имеет идентификатор, определяющий соответствие между элементами данных в кэше и их копиями в основной памяти.

    Когда клиент кэша (ЦПУ, веб-браузер, операционная система) обращается к данным, прежде всœего исследуется кэш. В случае если в кэше найдена запись с идентификатором, совпадающим с идентификатором затребованного элемента данных, то используются элементы данных в кэше. Такой случай принято называть попаданием кэша. В случае если в кэше не найдено записей, содержащих затребованный элемент данных, то он читается из основной памяти в кэш, и становятся доступным для последующих обращений. Такой случай принято называть промахом кэша. Процент обращений к кэшу, когда в нём найден результат, принято называть уровнем попаданий или коэффициентом попаданий в кэш.

    К примеру, веб-браузер проверяет локальный кэш на диске на наличие локальной копии веб-страницы, соответствующей запрошенному URL. В этом примере URL - это идентификатор, а содержимое веб-страницы - это элементы данных.

    В случае если кэш ограничен в объёме, то при промахе должна быть принято решение отбросить некоторую запись для освобождения пространства. Для выбора отбрасываемой записи используются разные алгоритмы вытеснения.

    При модификации элементов данных в кэше выполняется их обновление в основной памяти. Задержка во времени между модификацией данных в кэше и обновлением основной памяти управляется так называемой политикой записи.

    В кэше с немедленной записью каждое изменение вызывает синхронное обновление данных в основной памяти.

    В кэше с отложенной записью (или обратной записью) обновление происходит в случае вытеснения элемента данных, периодически или по запросу клиента. Для отслеживания модифицированных элементов данных записи кэша хранят признак модификации (изменённый или ʼʼгрязныйʼʼ). Промах в кэше с отложенной записью может потребовать два обращения к основной памяти: первое для записи заменяемых данных из кэша, второе для чтения крайне важно го элемента данных.

    В случае, в случае если данные в основной памяти бывают изменены независимо от кэша, то запись кэша может стать неактуальной. Протоколы взаимодействия между кэшами, которые сохраняют согласованность данных, называют протоколами когерентности кэша.

    [править]

    Кэш центрального процессора

    Ряд моделœей центральных процессоров (ЦП) обладают собственным кэшем, для того чтобы минимизировать доступ к оперативной памяти (ОЗУ), которая медленнее, чем регистры. Кэш-память может давать значительный выигрыш в производительности, в случае когда тактовая частота ОЗУ значительно меньше тактовой частоты ЦП. Тактовая частота для кэш-памяти обычно ненамного меньше частоты ЦП.

    См. также: Translation lookaside buffer.

    Уровни кэша

    Кэш центрального процессора разделён на несколько уровней. Для универсальных процессоров - до 3. Кэш-память уровня N+1 как правило больше по размеру и медленнее по скорости обращения и передаче данных, чем кэш-память уровня N.

    Самой быстрой памятью является кэш первого уровня - L1-cache. По сути, она является неотъемлемой частью процессора, поскольку расположена на одном с ним кристалле и входит в состав функциональных блоков. Состоит из кэша команд и кэша данных. Некоторые процессоры без L1 кэша не могут функционировать. На других его можно отключить, но тогда значительно падает производительность процессора. L1 кэш работает на частоте процессора, и, в общем случае, обращение к нему может производиться каждый такт (зачастую является возможным выполнять даже несколько чтений/записей одновременно). Латентность доступа обычно равна 2−4 тактам ядра. Объём обычно невелик - не более 128 Кбайт.

    Вторым по быстродействию является L2-cache - кэш второго уровня. Обычно он расположен либо на кристалле, как и L1, либо в непосредственной близости от ядра, к примеру, в процессорном картридже (только в слотовых процессорах). В старых процессорах - набор микросхем на системной плате. Объём L2 кэша от 128 Кбайт до 1−12 Мбайт. В современных многоядерных процессорах кэш второго уровня, находясь на том же кристалле, является памятью раздельного пользования - при общем объёме кэша в 8 Мбайт на каждое ядро приходится по 2 Мбайта. Обычно латентность L2 кэша, расположенного на кристалле ядра, составляет от 8 до 20 тактов ядра. В отличие от L1 кэша, его отключение может не повлиять на производительность системы. При этом, в задачах, связанных с многочисленными обращениями к ограниченной области памяти, к примеру, СУБД, производительность может упасть в десятки раз.

    Кэш третьего уровня наименее быстродействующий и обычно расположен отдельно от ядра ЦП, но он должна быть очень внушительного размера - более 32 Мбайт. L3 кэш медленнее предыдущих кэшей, но всё равно значительно быстрее, чем оперативная память. В многопроцессорных системах находится в общем пользовании.

    Кэш второго и третьего уровней наиболее полезен в математических задачах, к примеру, при обсчёте полигонов, когда объём данных меньше размера кэша. В этом случае, можно сразу записать всœе данные в кэш, а затем производить их обработку.

    Ассоциативность кэша

    Одна из фундаментальных характеристик кэш-памяти - уровень ассоциативности - отображает её логическую сегментацию. Дело в том, что последовательный перебор всœех строк кэша в поисках необходимых данных потребовал бы десятков тактов и свёл бы на нет весь выигрыш от использования встроенной в ЦП памяти. По этой причине ячейки ОЗУ жёстко привязываются к строкам кэш-памяти (в каждой строке бывают данные из фиксированного набора адресов), что значительно сокращает время поиска. С каждой ячейкой ОЗУ должна быть связано более одной строки кэш-памяти: к примеру, n-канальная ассоциативность (англ. n-way set associative) обозначает, что информация по некоторому адресу оперативной памяти может храниться в n местах кэш-памяти.

    При одинаковом объёме кэша схема с большей ассоциативностью будет наименее быстрой, но наиболее эффективной.

    Кэширование внешних накопителœей

    Многие периферийные устройства хранения данных используют кэш для ускорения работы, в частности, жёсткие диски используют кэш-память от 1 до 64 Мбайт (модели с поддержкой NCQ/TCQ используют её для хранения и обработки запросов), устройства чтения CD/DVD/BD-дисков также кэшируют прочитанную информацию для ускорения повторного обращения. Операционная система также использует часть оперативной памяти в качестве кэша дисковых операций (в том числе для внешних устройств, не обладающих собственной кэш-памятью, в т.ч. жёстких дисков, flash-памяти и гибких дисков).

    Применение кэширования внешних накопителœей обусловлено следующими факторами:

    скорость доступа процессора к оперативной памяти во много раз больше, чем к памяти внешних накопителœей;

    некоторые блоки памяти внешних накопителœей используются несколькими процессами одновременно и имеет смысл прочитать блок один раз, затем хранить одну копию блока в оперативной памяти для всœех процессов;

    доступ к некоторым блокам оперативной памяти происходит гораздо чаще, чем к другим, в связи с этим использование кэширования для таких блоков в целом увеличивает производительность системы;

    для некоторых блоков памяти внешних накопителœей не требуется непосредственной записи после модификации, и использование кэша для таких блоков оптимизирует использование ввода-вывода.

    Кэширование, выполняемое операционной системой

    Кэш оперативной памяти состоит из следующих элементов:

    набор страниц оперативной памяти, разделённых на буферы, равные по длинœе блоку данных соответствующего устройства внешней памяти;

    набор заголовков буферов, описывающих состояние соответствующего буфера;

    хеш-таблицы, содержащей соответствие номера блока заголовку;

    списки свободных буферов.

    Алгоритм работы кэша с отложенной записью

    Изначально всœе заголовки буферов помещаются в список свободных буферов. В случае если процесс намеревается прочитать или модифицировать блок, то он выполняет следующий алгоритм:

    пытается найти в хеш-таблице заголовок буфера с заданным номером;

    в случае, в случае если полученный буфер занят, ждёт его освобождения;

    в случае, в случае если буфер не найден в хеш-таблице, берёт первый буфер из хвоста списка свободных;

    в случае, в случае если список свободных буферов пуст, то выполняется алгоритм вытеснения (см. ниже);

    в случае, в случае если полученный буфер помечен как ʼʼгрязныйʼʼ, выполняет асинхронную запись содержимого буфера во внешнюю память.

    удаляет буфер из хеш-таблицы, в случае если он был помещён в неё;

    помещает буфер в хеш-таблицу с новым номером.

    Процесс читает данные в полученный буфер и освобождает его. В случае модификации процесс перед освобождением помечает буфер как ʼʼгрязныйʼʼ. При освобождении буфер помещается в голову списка свободных буферов.

    Таким образом:

    если процесс прочитал некоторый блок в буфер, то велика вероятность, что другой процесс при чтении этого блока найдёт буфер в оперативной памяти;

    запись данных во внешнюю память выполняется только тогда, когда не хватает ʼʼчистыхʼʼ буферов, либо по запросу.

    Алгоритм вытеснения

    В случае если список свободных буферов пуст, то выполняется алгоритм вытеснения буфера. Алгоритм вытеснения существенно влияет на производительность кэша. Существуют следующие алгоритмы:

    LRU (Least Recently Used) - вытесняется буфер, неиспользованный дольше всœех;

    MRU (Most Recently Used) - вытесняется последний использованный буфер;

    LFU (Least Frequently Used) - вытесняется буфер, использованный реже всœех;

    ARC (англ.) (Adaptive Replacement Cache) - алгоритм вытеснения, комбинирующий LRU и LFU, запатентованный IBM.

    Применение того или иного алгоритма зависит от стратегии кэширования данных. LRU наиболее эффективен, в случае если данные гарантированно будут повторно использованы в ближайшее время. MRU наиболее эффективен, в случае если данные гарантированно не будут повторно использованы в ближайшее время. В случае, в случае если приложение явно указывает стратегию кэширования для некоторого набора данных, то кэш будет функционировать наиболее эффективно.

    Программное кэширование

    Политика записи при кэшировании

    При чтении данных кэш-память даёт однозначный выигрыш в производительности. При записи данных выигрыш можно получить только ценой снижения надёжности. По этой причине в различных приложениях должна быть выбрана та или иная политика записи кэш-памяти..

    Существуют две основные политики записи кэш-памяти - сквозная запись (write-through) и отложенная запись (write-back).

    сквозная запись подразумевает, что при изменении содержимого ячейки памяти, запись происходит синхронно и в кэш и в основную память.

    отложенная запись подразумевает, что можно отложить момент записи данных в основную память, а записать их только в кэш. При этом данные будут выгружены в оперативную память только в случае обращения к ним какого либо другого устройства (другой ЦП, контроллер DMA) либо нехватки места в кэше для размещения других данных. Производительность, по сравнению со сквозной записью, повышается, но это может поставить под угрозу целостность данных в основной памяти, поскольку программный или аппаратный сбой может привести к тому, что данные так и не будут переписаны из кэша в основную память. Вместе с тем, в случае кэширования оперативной памяти, когда используются два и более процессоров, нужно обеспечивать согласованность данных в разных кэшах.

    Кэширование интернет-страниц

    В процессе передачи информации по сети может использоваться кэширование интернет-страниц - процесс сохранения часто запрашиваемых документов на (промежуточных) прокси-серверах или машинœе пользователя, с целью предотвращения их постоянной загрузки с сервера-источника и уменьшения трафика. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, информация перемещается ближе к пользователю. Управление кэшированием осуществляется при помощи HTTP-заголовков.

    Как вариант, кэширование веб-страниц может осуществляться с помощью CMS конкретного сайта для снижения нагрузки на сервер при большой посœещаемости. Кэширование может производится как в память, так и в файловый кэш (кэш на файлах).

    Кэширование результатов работы

    Многие программы записывают куда-либо промежуточные или вспомогательные результаты работы, чтобы не вычислять их каждый раз, когда они понужнобятся. Это ускоряет работу, но требует дополнительной памяти (оперативной или дисковой). Примером такого кэширования является индексирование баз данных.

    При выполнении различных задач в процессор вашего компьютера поступают необходимые блоки информации из оперативной памяти. Обработав их ЦП записывает полученные результаты вычислений в память и получает на обработку последующие блоки данных. Так продолжается до тех пор, пока поставленная задача не будет выполнена.

    Вышеупомянутые процессы производятся на очень большой скорости. Однако скорость даже самой быстрой оперативной памяти значительно меньше скорости любого слабого процессора. Каждое действие, будь то запись на неё информации или считывание с неё занимают много времени. Скорость работы оперативной памяти в десятки раз ниже скорости процессора.

    Не смотря на такую разницу в скорости обработки информации, процессор ПК не простаивает без дела и не ожидает, когда ОЗУ выдаст и примет данные. Процессор всегда работает и всё благодаря присутствию в нем кэш памяти.

    Кэш — особый вид оперативной памяти. Процессор использует память кэша для хранения тех копий информации из основной оперативной памяти компьютера, вероятность обращения к которым в ближайшее время очень велика.

    По сути кэш-память выполняет роль быстродействующего буфера памяти хранящего информацию, которая может потребоваться процессору. Таким образом процессор получает необходимые данные в десятки раз быстрее, чем при считывании их из оперативной памяти.

    Основным отличием кэш памяти от обычного буфера являются встроенные логические функции. В буфере хранятся случайные данные, которые как правило обрабатываются по схеме » получен первым, выдан первым» либо » получен первым, выдан последним». В кэш памяти содержатся данные, вероятность обращения к которым в ближайшее время очень велика. Поэтому благодаря «умному кэшу» процессор может работать с полной скоростью и не ожидать данные, извлекаемые из более медленной оперативной памяти.

    Основные типы и уровни кэш-памяти L1 L2 L3

    Кэш память выполнена в виде микросхем статической оперативной памяти (SRAM), которые устанавливаются на системной плате либо встроены в процессор. В сравнении с другими видами памяти, статическая память способна работать на очень больших скоростях.

    Скорость кэша зависит от объема конкретной микросхемы, Чем больше объем микросхемы, тем труднее добиться высокой скорости для её работы. Учитывая данную особенность, при изготовлении кэш память процессора выполняют в виде нескольких небольших блоков, именуемых уровнями. Самой распространенной на сегодняшний день считается трехуровневая система кеша L1,L2, L3:

    Кэш память первого уровня L1 — самая маленькая по объему (всего несколько десятков килобайт), но самая быстрая по скорости и наиболее важная. Она содержит данные наиболее часто используемые процессором и работает без задержек. Обычно количество микросхем памяти уровня L1 равно количеству ядер процессора, при этом каждое ядро получает доступ только к своей микросхеме L1.

    Кэш память уровня L2 по скорости уступает памяти L1, но выигрывает в объеме, который измеряется уже в нескольких сотнях килобайт. Она предназначена для временного хранения важной информации, вероятность обращения к которой ниже, чем у информации хранящейся в кэше L1.

    Третий уровень кэш памяти L3 — имеет самый большой объем из трех уровней (может достигать десятков мегабайт), но и обладает самой медленной скоростью, которая всё же значительно выше скорости оперативной памяти. Кэш память L3 служит общей для всех ядер процессора. Уровень памяти L3 предназначен для временного хранения тех важных данных, вероятность обращения к которым чуть ниже, чем у информации которая хранится в первых двух уровнях L1, L2. Она также обеспечивает взаимодействие ядер процессора между собой.

    Некоторые модели процессоров выполнены с двумя уровнями кэш памяти, в которых L2 совмещает все функции L2 и L3.

    Когда полезен большой объем кэша.

    Значительный эффект от большого объема кэша вы ощутите при использовании программ архиваторов, в 3D играх, во время обработки и кодирования видео. В относительно «легких» программах и приложениях разница практически не заметна (офисные программы, плееры и т.п).

    Ч то является самым грязным местом на компьютере? Думаете, корзина? Папки пользователя? Система охлаждения? Не угадали! Самое грязное место – это кэш! Ведь его постоянно приходится чистить!

    На самом деле кэшей на компьютере много, и служат они не свалкой отходов, а ускорителями оборудования и приложений. Откуда же у них репутация «системного мусоропровода»? Давайте разберемся, что такое кэш, каким он бывает, как работает и почему время от времени .

    Понятие и виды кэш-памяти

    К эшем или кэш-памятью называют специальное хранилище часто используемых данных, доступ к которому осуществляется в десятки, сотни и тысячи раз быстрее, чем к оперативной памяти или другому носителю информации.

    Собственная кэш-память есть у приложений (веб-браузеров, аудио- и видеоплееров, редакторов баз данных и т. д.), компонентов операционных систем (кэш эскизов, DNS-кэш) и оборудования (cache L1-L3 центрального процессора, фреймбуфер графического чипа, буферы накопителей). Реализована она по-разному – программно и аппаратно.

    • Кеш программ – это просто отдельная папка или файл, куда загружаются, например, картинки, меню, скрипты, мультимедийный контент и прочее содержимое посещенных сайтов. Именно в такую папку в первую очередь «ныряет» браузер, когда вы открываете веб-страницу повторно. Подкачка части контента из локального хранилища ускоряет ее загрузку и .

    • В накопителях (в частности, жестких дисках) кэш представляет собой отдельный чип RAM емкостью 1-256 Mb, расположенный на плате электроники. В него поступает информация, считанная с магнитного слоя и пока не загруженная в оперативную память, а также данные, которые чаще всего запрашивает операционная система.

    • Современный центральный процессор содержит 2-3 основных уровня кеш-памяти (ее также называют сверхоперативной памятью), размещенных в виде аппаратных модулей на одном с ним кристалле. Самым быстрым и наименьшим по объему (32-64 Kb) является cache Level 1 (L1) – он работает на той же частоте, что и процессор. L2 занимает среднее положение по скорости и емкости (от 128 Kb до 12 Mb). А L3 – самый медленный и объемный (до 40 Mb), на некоторых моделях отсутствует. Скорость L3 является низкой лишь относительно его более быстрых собратьев, но и он в сотни раз шустрее самой производительной оперативки.

    Сверхоперативная память процессора применяется для хранения постоянно используемых данных, перекачанных из ОЗУ, и инструкций машинного кода. Чем ее больше, тем процессор быстрее.

    Сегодня три уровня кеширования – уже не предел. С появлением архитектуры Sandy Bridge корпорация Intel реализовала в своей продукции дополнительный cache L0 (предназначенный для хранения расшифрованных микрокоманд). А наиболее высокопроизводительные ЦП имеют и кэш четвертого уровня, выполненный в виде отдельной микросхемы.

    Схематично взаимодействие уровней cache L0-L3 выглядит так (на примере Intel Xeon):

    Человеческим языком о том, как всё это работает

    Ч тобы было понятно, как функционирует кэш-память, представим человека, работающего за письменным столом. Папки и документы, которые он использует постоянно, лежат на столе (в кэш-памяти ). Для доступа к ним достаточно протянуть руку.

    Бумаги, которые нужны ему реже, хранятся недалеко на полках (в оперативной памяти ). Чтобы их достать, нужно встать и пройти несколько метров. А то, с чем человек в настоящее время не работает, сдано в архив (записано на жесткий диск ).

    Чем шире стол, тем больше документов на нем поместится, а значит, работник сможет получить быстрый доступ к большему объему информации (чем емкость кэша больше, тем в теории быстрее работает программа или устройство ).

    Иногда он допускает ошибки – хранит на столе бумаги, в которых содержатся неверные сведения, и использует их в работе. В результате качество его труда снижается (ошибки в кэше приводят к сбоям в работе программ и оборудования ). Чтобы исправить ситуацию, работник должен выбросить документы с ошибками и положить на их место правильные (очистить кэш-память ).

    Стол имеет ограниченную площадь (кэш-память имеет ограниченный объем ). Иногда ее можно расширить, например, придвинув второй стол, а иногда нельзя (объем кэша можно увеличить, если такая возможность предусмотрена программой; кэш оборудования изменить нельзя, так как он реализован аппаратно ).

    Другой способ ускорить доступ к большему объему документов, чем вмещает стол – найти помощника, который будет подавать работнику бумаги с полки (операционная система может выделить часть неиспользуемой оперативной памяти для кэширования данных устройств ). Но это всё равно медленнее, чем брать их со стола.

    Документы, лежащие под рукой, должны быть актуальны для текущих задач. За этим обязан следить сам работник. Наводить порядок в бумагах нужно регулярно (вытеснение неактуальных данных из кэш-памяти ложится «на плечи» приложений, которые ее используют; некоторые программы имеют функцию автоматической очистки кэша ).

    Если сотрудник забывает поддерживать порядок на рабочем месте и следить за актуальностью документации, он может нарисовать себе график уборки стола и использовать его, как напоминание. В крайнем случае – поручить это помощнику (если зависимое от кэш-памяти приложение стало работать медленнее или часто загружает неактуальные данные, используйте средства очистки кэша по расписанию или раз в несколько дней проводите эту манипуляцию вручную ).

    С «функциями кэширования» мы на самом деле сталкиваемся повсеместно. Это и покупка продуктов впрок, и различные действия, которые мы совершаем мимоходом, заодно и т. д. По сути, это всё то, что избавляет нас от лишней суеты и ненужных телодвижений, упорядочивает быт и облегчает труд. То же самое делает и компьютер. Словом, если бы не было кэша, он бы работал в сотни и тысячи раз медленнее. И нам бы вряд ли это понравилось.

    Ещё на сайте:

    Что такое кэш, зачем он нужен и как работает обновлено: Февраль 25, 2017 автором: Johnny Mnemonic