Электрический конденсатор. Виды конденсаторов. Из чего делают конденсаторы

Являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы.

Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика. Емкостное сопротивление конденсатора зависит от его емкости и частоты тока. Конденсатор проводит переменный ток и не пропускает постоянный. Емкость конденсатора тем больше, чем больше площадь пластин (обкладок) конденсатора, и тем больше, чем тоньше слой диэлектрика между ними.

Емкости параллельно соединенных конденсаторов складываются. Емкости последовательно соединенных конденсаторов считаются по формуле, приведенной на рисунке ниже:

Конденсаторы бывают как постоянной, так и переменной емкости. Последние так и называются и сокращенно пишутся КПЕ (конденсатор переменной емкости). Конденсаторы постоянной емкости бывают как полярные, так и неполярные. На рисунке ниже изображено схематическое изображение полярного конденсатора:

К полярным относятся электролитические конденсаторы. Выпускаются также танталовые конденсаторы, которые отличаются от алюминиевых электролитических, более высокой стабильностью, но и стоят дороже. Электролитические конденсаторы подвержены, по сравнению с неполярными более быстрому старению. Полярные конденсаторы имеют положительный и отрицательный электроды, плюс и минус. На фото далее изображен электролитический конденсатор:

У советских электролитических конденсаторов полярность обозначалась на корпусе знаком плюс у положительного электрода. У импортных конденсаторов обозначается отрицательный электрод знаком минус. При нарушении режимов работы электролитических конденсаторов они могут вздуться и даже взорваться. У электролитических конденсаторов во избежания взрыва, делают при их изготовлении специальные насечки на крышке корпуса:

Также электролитические конденсаторы могут взорваться, если на них по ошибке подать напряжение выше того, на которое они были рассчитаны. На фото электролитического конденсатора приведенного выше, видно надпись 33 мкФ х 100 В., это означает его емкость, равную 33 микрофарад и допустимое напряжение до 100 вольт. Неполярный конденсатор на схемах обозначается следующим образом:

Неполярный конденсатор изображение на схеме

На фото ниже изображены пленочный и керамический конденсаторы:

Пленочный


Керамический

Конденсаторы различают по виду диэлектрика. Существуют конденсаторы с твердым, жидким и газообразным диэлектриком. С твердым диэлектриком это: бумажные, пленочные, керамические, слюдяные. Также существуют электролитические, о которых уже было рассказано выше и оксидно-полупроводниковые конденсаторы. Эти конденсаторы отличаются от всех остальных большой удельной емкостью. Многие, думаю, встречали на импортных конденсаторах такое цифровое обозначение:

На рисунке выше видно, как можно посчитать номинал такого конденсатора. Например, если на конденсаторе нанесена маркировка 332, то это означает, что он имеет емкость 3300 пикофарад или 3.3 нанофарад. Ниже приведена таблица, сверяясь с которой можно легко посчитать номинал любого конденсатора с такой маркировкой:

Существуют конденсаторы и в SMD исполнении, наиболее распространены в радиолюбительских конструкциях я думаю типы 0805 и 1206. Изображение неполярного SMD конденсатора можно видеть на рисунках ниже:

Промышленностью выпускаются и так называемые твердотельные конденсаторы. Внутри у них вместо электролита находится органический полимер.

Переменные конденсаторы

Как и резисторы, некоторые специальные конденсаторы могут изменять свою ёмкость, если это необходимо в процессе настройки. На рисунке изображено устройство конденсатора переменной емкости:

Регулируется емкость в переменных конденсаторах изменением площади параллельно расположенных пластин конденсатора. Делятся конденсаторы на переменные, которые имеют ручку для вращения вала, и подстроечные, которые имеют шлиц под отвертку, и также состоят из подвижной и не подвижной частей.

На рисунке они обозначены как ротор и статор. Такие конденсаторы используются в радиоприемниках для настройки на нужную частоту радиовещания. Емкость таких конденсаторов обычно бывает небольшой и равняется единицам – максимум сотням пикофарад. Так обозначается на схемах конденсатор переменной емкости:

На следующем рисунке показан подстроечный конденсатор. Подстроечный конденсатор обозначается на схемах следующим образом:

Такие конденсаторы обычно регулируются только один раз при сборке и настройке радиоэлектронной аппаратуры.

На следующем рисунке изображено строение подстроечного конденсатора:

Емкость конденсатора измеряется в Фарадах. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. Перевести из микрофарад в пикофарады и обратно очень легко. 1 микрофарад равен 1000 нанофарад или 1000000 пикофарад. Конденсаторы, помимо прочего, применяются в колебательных контурах радиоприемников, в блоках питания для сглаживания пульсаций, а также в качестве разделительных в усилителях. Обзор подготовил AKV .

Обсудить статью КОНДЕНСАТОР

Конденсатор

Основа конструкции конденсатора - две токопроводящие обкладки, между которыми находится диэлектрик

Слева - конденсаторы для поверхностного монтажа; справа - конденсаторы для объёмного монтажа; сверху - керамические; снизу - электролитические.

Различные конденсаторы для объёмного монтажа

Свойства конденсатора

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.

где - мнимая единица , - частота протекающего синусоидального тока, - ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 10 6 пФ) и пикофарадах, но нередко и в нанофарадах. При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, т.е. постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения (пикоФарад). Для , а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мк x 10 В». Для указывают диапазон изменения ёмкости, например так: «10 – 180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24 , т.е. на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.

Характеристики конденсаторов

Основные параметры

Ёмкость

Основной характеристикой конденсатора является его ёмкость . В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = C U ). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад . Однако существуют конденсаторы с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии друг от друга, в системе СИ выражается формулой: , где - относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (эта формула справедлива, лишь когда много меньше линейных размеров пластин).

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы. Общая ёмкость батареи последовательно соединённых конденсаторов равна

или

Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.

Удельная ёмкость

Конденсаторы также характеризуются удельной ёмкостью - отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

Номинальное напряжение

Другой, не менее важной характеристикой конденсаторов является номинальное напряжение - значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.

Полярность

Конденсаторы, разрушившиеся без взрыва из-за температуры и напряжения, не соответствующих рабочим.

Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Взрывы электролитических конденсаторов - довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы X, K или Т на торце). При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа, и давление спадает без взрыва и осколков.

Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью . С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:

Электрическое сопротивление изоляции конденсатора - r

Сопротивление изоляции - это сопротивление конденсатора постоянному току, определяемое соотношением r = U / I ут , где U - напряжение, приложенное к конденсатору, I ут - ток утечки.

Эквивалентное последовательное сопротивление - R

Эквивалентное последовательное сопротивление (ЭПС, англ. ESR ) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также потерями в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор.

В большинстве случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение может быть жизненно важным для надёжности устройства (см., напр., Capacitor plague(англ.) ).

Эквивалентная последовательная индуктивность - L

Эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. На низких частотах (до единиц килогерц) обычно не учитывается в силу своей незначительности.

Тангенс угла потерь

Тангенс угла потерь - отношение мнимой и вещественной части комплексной диэлектрической проницаемости.

Температурный коэффициент ёмкости (ТКЕ)

ТКЕ - относительное изменению емкости при изменении температуры окружающей среды на один градус Цельсия (Кельвина). Таким образом значение ёмкости от температуры представляется линейной формулой:

,

где ΔT - увеличение температуры в °C или °К относительно нормальных условий, при которых специфицировано значение ёмкости. TKE применяется для характеристики конденсаторов со значительной линейной зависимостью ёмкости от температуры. Однако ТКЕ определяется не для всех типов конденсаторов. Конденсаторы, имеющие нелинейную зависимость емкости от температуры, и конденсаторы с большими уходами емкости от воздействия температуры окружающей среды в обозначении имеют указание на относительное изменение емкости в рабочем диапазоне температур.

Диэлектрическое поглощение

Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение или адсорбция электрического заряда . Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC -цепочек с различной постоянной времени . Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Подобный эффект можно наблюдать и на большинстве электролитических конденсаторов, но в них он является следствием

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Конденсаторы

Надо сказать, что конденсатор , как и резистор, можно увидеть во многих устройствах. Как правило, простейший конденсатор это две металлических пластинки и воздух между ними . Вместо воздуха может быть фарфор, слюда или другой материал, который не проводит ток. Если резистор пропускает постоянный ток, то через конденсатор он не проходит. А переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где надо отделить постоянный ток от переменного .

Конденсаторы бывают постоянные, подстроечные, переменные и электролитические . Кроме этого, они отличаются материалом между пластинами и внешней конструкцией. Существуют конденсаторы воздушные , слюдяные , керамические, пленочные и т.п. Применение тех или иных видов конденсаторов обычно описано в сопровождающей документации к принципиальной схеме. Некоторые конденсаторы постоянной емкости и их обозначение на принципиальной схеме показаны на Рис.1.

Основной параметр конденсатора – емкость . Она измеряется в микро -, нано - и пикофарадах . На схемах Вы встретите все три единицы измерения. Обозначаются они следующим образом: микрофарады – мКф или мF , нанофарады – нф, Н или п , пикофарады – пф или pf . Чаще буквенное обозначение пикофарад не указывают ни на схемах, ни на самой радиодетали, т.е. обозначение 27, 510 подразумевают 27 пф, 510 пф. Чтобы проще разбираться в емкости, запомните следующее: 0,001 мкф = 1 нф, или 1000 пф.

В отечественной электронике применяется буквенно-цифровая маркировка конденсаторов. Если емкость выражают целым числом, то буквенное обозначение емкости ставят после этого числа, например: 12П (12 пф) , 15Н (15 нф = 15 000 пф, или 0,015 мкф), ЮМ (10 мкф). Чтобы выразить номинальную емкость десятичной дробью, буквенное обозначение единицы емкости размещают перед числом: Н15 (0,15 нф = 150 пф) , М22 (0,22 мкф). Для выражения емкости конденсатора целым числом с десятичной дробью буквенное обозначение единицы ставят между целым числом и десятичной дробью, заменяя ее запятой, например: 1П2 (1,2 пф) , 4Н7 (4,7 нф = 4700 пф), 1М5 (1,5 мкф).
Буквенно-цифровая маркировка конденсаторов используется и в зарубежной электронике. Она нашла широкое применение на конденсаторах большой емкости. Например, надпись 0,47 |iF = 0,47 мкф. Не забыли разработчики и о цветовой маркировке , которая может содержать полосы, кольца или точки . Маркируемые параметры: номинальная емкость ; множитель ; допускаемое отклонение напряжения ; температурный коэффициент емкости (ТКЕ) и (или) номинальное напряжение. Определить емкость можно при помощи следующей таблицы.


Некоторые примеры цветовой маркировки постоянных конденсаторов показаны на Рис. 2.


Кроме буквенно-цифровой и цветовой маркировки применяется способ цифровой маркировки конденсаторов тремя или четырьмя цифрами (международный стандарт). В случае трехзначной маркировки первые две цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра – количество нулей (здесь обращаю ваше внимание на маркировку конденсаторов емкостью менее 10 пикофарад: последней цифрой в этом случае может быть девятка):


(в таблице ошибка, должно быть: 100 10 пикофарад 0,01 нанофарада - 0,00001 мкф(!) )




При кодировании четырехзначным числом последняя цифра так же указывает количество нулей, а первые три - емкость в пикофарадах (pF):


Некоторые примеры цифровой маркировки конденсаторов представлены на Рис. 3.


Среди большого разнообразия конденсаторов постоянной емкости особое место занимают электролитические конденсаторы . Сегодня чаще всего можно услышать название оксидные конденсаторы, т.к. в них используется оксидный диэлектрик. Такие конденсаторы выпускают большой емкости – от 0,5 до 10000 мкф. Оксидные конденсаторы полярны , поэтому на принципиальных схемах для них указывают не только емкость, но и знак ” + ” (плюс), а на самом конденсаторе: в зарубежном варианте нанесен знак “-“, в отечественном устаревшем – ” + ” . Кроме этого, на принципиальных схемах указывают и максимальное напряжение, на котором их можно использовать. Например, надпись 5,0×10 В означает, что конденсатор емкостью 5 мкф надо взять на напряжение не ниже 10 В.

Многие начинающие бояться применять конденсаторы на большее напряжение, чем указанное в схемах. А зря! Возьмем, к примеру, устройство с питанием 9В. Здесь необходимо использовать конденсатор на напряжение не ниже 10В, но лучше – 16В. Дело в том, что “питание” не застраховано от скачков. А для конденсаторов резкие перепады в сторону увеличения приравниваются к смерти. Поэтому, если Вы примените электролит на напряжение 50В, 160В или еще большее, хуже работать устройство не будет! Разве что размеры увеличатся: чем больше напряжение конденсатора, тем больше его размеры.

Оксидные конденсаторы обладают неприятным свойством терять емкость – “высыхать” , что является одной из основных причин отказов радиоаппаратуры, находящейся в длительной эксплуатации. Такой неприятной особенностью в частности обладают отечественные электролиты, особенно старые. Поэтому старайтесь ставить зарубежные новые конденсаторы.
Выпускают производители и неполярные оксидные конденсаторы , хотя применяются они довольно редко. Существую еще и танталовые конденсаторы , которые отличаются долговечностью, высокой стабильностью рабочих характеристик, устойчивостью к повышению температуры. При небольшом внешнем виде они могут обладать достаточно большой емкостью.
Линия, нанесенная на корпусе танталового конденсатора, означает плюсовой вывод, а не минус, как многие думают .
Некоторые разновидности оксидных конденсаторов показаны на Рис. 4.


Особенностью подстроечных и переменных конденсаторов есть изменение емкости при обращении оси, которая выступает наружу. Раньше они широко применялись радиоприемниках. Именно конденсатор переменной емкости крутили Ваши родители для настройки на нужную радиостанцию. Некоторые подстроечные и переменный конденсаторы показаны на Рис. 5.


Для подстроечных или переменных конденсаторов на схеме указывают крайние значения емкости, которые создаются, если вращать ось конденсатора от одного крайнего положения к другому или вертеть по кругу (как у подстроечных конденсаторов). Например, надпись 5-180 свидетельствует о том, что в одном крайнем положении оси емкость конденсатора составляет 5 пф, а в другом – 180 пф. При плавном возвращении с одного положения в другое емкость конденсатора также плавно будет изменяться от 5 до 180 пф или от 180 до 5 пф. Сегодня не используют конденсаторы переменной емкости, так как их вытеснили варикапы – полупроводниковый элемент, емкость которого зависит от приложенного напряжения .


К атегория:

Производство радиоаппаратуры

Конденсаторы постоянной емкости

Конденсаторы постоянной емкости применяют в различных схемах для разделения переменной и постоянной составляющих тока и сглаживания пульсации напряжений выпрямителя. В сочетании с другими элементами схем конденсаторы образуют резонансные контуры, широко используемые в радиоаппаратуре.

Конденсаторы постоянной емкости классифицируют по величине номинальной емкости, классу точности, номинальному рабочему напряжению, назначению, материалу диэлектрика и по конструктивным признакам.

Номинальные величины емкостей конденсаторов установлены ГОСТ 2519 - 60.

При изготовлении конденсаторов действительное значение емкости отличается от номинального, обозначенного в маркировке. Допустимое отклонение емкости от номинального называется допуском. По этому принципу все конденсаторы разделяют на пять классов: 0, 1, II, III , IV, допуски их соответственно составляют ±2%; ±5%; ±10%; ±20% и от - 20 до + 50%.

В зависимости от назначения различают контурные, разделительные, блокировочные и фильтровые конденсаторы.

По материалу диэлектрика конденсаторы делят на слюдяные, керамические, бумажные, металлобумажные, бумаго-масляные, пленочные, стеклоэмалевые, стеклокерамические, электролитические, воздушные, вакуумные, газонаполненные.

По конструктивному признаку конденсаторы подразделяют на трубчатые, дисковые, бочоночные, горшковые, опрессованные и герметизированные, плоские и цилиндрические и т. д.

Независимо от вида конденсатор характеризуется рабочим напряжением. Рабочим напряжением называется напряжение, под которым обкладки конденсатора могут длительно находиться без пробоя разделяющего их диэлектрика. Рабочее напряжение выражают в вольтах.

Большое значение для нормальной работы конденсатора имеет сопротивление его изоляции. При малом сопротивлении изоляции возникают утечки, нарушающие нормальную работу схемы. Потери в конденсаторе характеризуются тангенсом угла диэлектрических потерь, выражающим отношение мощности активных потерь к реактивной мощности конденсатора.

В маломощных конденсаторах потери энергии в основном вызываются проводимостью диэлектрика и диэлектрическим гистерезисом, т. е. потерями на поворот полярных молекул в направлении поля при приложении напряжения к обкладкам. Потери в обкладках и выводах малы, поэтому ими обычно пренебрегают.

Одной из важнейших характеристик конденсатора является стабильность - неизменность величины емкости конденсатора во время работы. Изменение емкости может быть как временным, так и необратимым. Основным фактором, влияющим на стабильность емкости конденсатора, является воздействие температуры окружающей среды и нагрев конденсатора за счет рассеиваемой на нем мощности. При повышении температуры увеличиваются геометрические размеры материала, что и влечет за собой временное (до возвращения температуры к первоначальному значению) изменение емкости.

Однако повышение температуры может привести и к необратимым изменениям емкости. Например, в конденсаторе может произойти перегруппировка воздушных зазоров между обкладками и диэлектриком. Необратимое изменение емкости происходит также вследствие старения диэлектрика, которое заключается в изменении его диэлектрической проницаемости.

Меры борьбы против изменения емкости конденсаторов - пропитка их специальными составами (касторовое масло, церезин, вазелин и т. д.) и серебрение пластинок слюды вместо применения металлической фольги. В особо ответственных случаях конденсаторы герметизируют.

При маркировке конденсаторов указывают тип, номинальное рабочее напряжение, номинальную емкость (в пикофарадах или микрофарадах), класс точности (допустимое отклонение от номинальной емкости в процентах).

Слюдяные и стеклоэмалевые конденсаторы имеют дополнительные указания на принадлежность к группе ТКЕ (температурный коэффициент емкости) в виде букв А, Б, В, Г для слюдяных и Р, О, М, П для стеклоэмалевых. Температурный коэффициент емкости керамических конденсаторов обозначают цветным кодом: корпуса конденсаторов окрашивают в цвета группы ТКЕ .

Рис. 1. Слюдяные конденсаторы: а -КСО; б – КСГ

Конденсаторы КСО могут работать в температурном интервале от 60 до 4 70° С, при относительной влажности воздуха до 80% (кратковременно - до 98%) и при атмосферном давлении не ниже 5 мм рт. cm (для конденсаторов на рабочее напряжение до 500 в). При монтаже конденсаторов КСО в контурах различных видов аппаратуры следует помнить, что они имеют разный ТКЕ .

Кроме того, выпускаются температуростойкие опрессованные слюдяные конденсаторы КСОТ , а также конденсаторы повышенной надежности К31У-ЗЕ.

Помимо опрессованных конденсаторов, выпускаются слюдяные герметизированные конденсаторы в металлических и керамических корпусах.

Конденсаторы КСГ (конденсаторы слюдяные герметизированные) в металлических корпусах (рис. 39, б) бывают двух видов: КСГ -1 и КСГ -2. Конденсаторы КСГ -1 используются на номинальные емкости 470 - 20000 пф, а КСГ -2 - от 0,02 до 0,1 мкф при рабочем напряжении 500 и 1000 в. Эти конденсаторы выпускаются 0, I, II и III классов точности.

Конденсаторы СГМ (слюдяные герметизированные малогабаритные) во влагонепроницаемых керамических корпусах, опаянных по торцам, имеют серебряные, нанесенные на слюду обкладки. Их выпускают по габаритным размерам четырех видов: СГМ -1, СГМ -2, СГМ -3 и СГМ -4. Вес конденсаторов СГМ от 3 до 10 г, номинальные значения емкости от 100 до 10 ООО пф с допусками по 0 I, II и III классам точности. Они рассчитаны на рабочее напряжение от 250 до 1500 в. Во влажной атмосфере эти конденсаторы работают более устойчиво, чем конденсаторы КСО .

Для изготовления слюдяных конденсаторов применяют слюду высшего сорта - мусковит. Обкладки конденсаторов изготовляют из тонкой металлической фольги (алюминиевой, свинцово-оловянной или медной) толщиной 7 - 100 мкм.

В качестве обкладок высокостабильных конденсаторов применяют серебро, которое вжигают или наносят методом распыления.

Керамические конденсаторы. Керамические конденсаторы разделяют по конструкции на трубчатые и дисковые. Более распространенными являются трубчатые конденсаторы КТК и КТ (конденсаторы трубчатые керамические). Конденсатор КТК (рис. 40, а) представляет собой тонкостенную керамическую трубочку, на внешнюю и внутреннюю поверхности которой нанесены обкладки из тонких слоев серебра. Выводы от обкладок выполнены из медной посеребренной проволоки.

Конденсаторы КТМ (конденсаторы трубчатые малогабаритные) имеют аналогичную с конденсаторами КТК конструкцию, но размеры их меньше.

Очень удобны при монтаже так называемые опорные керамические конденсаторы КО. В них внешняя обкладка соединена с болтом, который служит одновременно для укрепления конденсатора на металлическом шасси (панели) и для надежного заземления этой обкладки. Внутренняя обкладка имеет вывод в виде лепестка.

В радиоаппаратуре, предназначенной для работы при повышенной влажности, рекомендуется применять трубчатые конденсаторы КГК (конденсаторы герметизированные керамические), имеющие влагонепроницаемую керамическую оболочку.

Основой конденсаторов КДК и КД (конденсаторы дисковые керамические) сужит керамическая пластина, выполненная в виде диска. Обкладками его являются тонкие слои серебра, нанесенные на каждую из поверхностей этой пластины. Конденсаторы КДК (рис. 2, в) в зависимости от диаметра диска разделяют на три типа:

Рис. 2. Керамические конденсаторы: а -КТК; б-КГК : в-КДК

Конденсаторы КДМ (конденсаторы дисковые малогабаритные), предназначенные для малогабаритной аппаратуры, собранной на полупроводниковых приборах, имеют диаметр 4 мм. Выводы КДК и КДМ - проволочки, припаянные к обкладкам.

Конденсаторы КДУ (конденсаторы дисковые для ультракоротковолновых цепей) имеют такой же диаметр, что и КДК , но выводы их сделаны в виде коротких широких лепестков.

В конденсаторах КДО (конденсаторы дисковые опорные) одна из обкладок припаяна к головке болта, который служит для крепления конденсатора на шасси и надежного соединения этой обкладки с шасси. Вторая обкладка имеет вывод в виде лепестка.

Рис. 3. Секция бумажного конденсатора: 1 - конденсаторная бумага: 2 - фольга

В качестве диэлектрика в керамических конденсаторах применяют специальную конденсаторную керамику, характеризующуюся относительно высокой диэлектрической проницаемостью и малыми потерями. Конденсаторы КТК выпускают емкостью от 2 до 100 пф, а конденсаторы КДК -от 1 до 75 пф по 0, I, II и III классам точности. Конденсаторы КДМ изготовляют на номинальные емкости от 1 до 220 пф по I, II и III классам точности, а конденсаторы КТМ емкостью от 1 до 10 000 пф также по I, II и III классам точности.

В последнее время широкое применение в радиоаппаратуре на полупроводниковых приборах нашли керамические конденсаторы с большими значениями емкости (порядка 0,01 мкф) при малых габаритах КЛС (керамический литой секционированный), КП (керамический пластинчатый) и КПС (керамический пластинчатый сегнетоэлектрический).

Бумажные конденсаторы. В бумажных конденсаторах в качестве диэлектрика используют конденсаторную бумагу толщиной от 4 до 10 мкм, а в качестве обкладок - алюминиевую или свин-цово-оловянную фольгу толщиной 7-7,5 мкм.

Секция бумажного конденсатора состоит из лент металлической фольги 2, между которыми проложена конденсаторная бумага /; число слоев бумаги должно быть не менее двух. При одном слое бумаги сильно возрастет вероятность быстрого пробоя конденсатора, так как бумага содержит определенное количество электропроводящих включений.

В производстве радиоаппаратуры применяют главным образом конденсаторы КБГ (конденсаторы бумажные герметизированные). Этот тип конденсаторов имеет ряд разновидностей:
— КБГ -И - в цилиндрическом корпусе из керамики или стекла;
— КБГ -М1 и КБГ -М2 - в металлическом корпусе с одним или мя изолированными от корпуса выводами (рис. 42, б); КБГ -МП - в металлическом прямоугольном корпусе, плоский;
— КБГ -МН-в металлическом прямоугольном корпусе, нормальный.

Номинальные величины емкостей конденсаторов КБГ -И, КБГ -МН, КБГ -МП от 470 пф ДО 10 мкф при рабочих напряжениях 200, 400, 600, 1000 и 1500 в, а конденсаторов КБГ -М1 и КБГ -М2 от 0,1 до 0,25 мкф при рабочих напряжениях 200, 400 или 600 в.

Для малогабаритной аппаратуры на полупроводниковых приборах выпускаются специальные конденсаторы БМ, БГМ (бумажные герметизированные малогабаритные - рис. 42, д) и БГМТ (бумажные герметизированные малогабаритные термостойкие).

Номинальные емкости конденсаторов БМ: от 510 до 2200 пф при рабочем напряжении 300 в; от 3300 пф до 0,03 мкф при рабочем напряжении 200 в; 0,04 и 0,05 мкф при рабочем напряжении 150 в. Эти конденсаторы изготовляются по II и III классам точности.

Конденсаторы БГМ (БГМ -1 и БГМ -2) выпускаются с рабочим напрямышленностью, следует отметить малогабаритные опреесованные конденсаторы К40П-1, герметизированные К40П-2, негерметизи-рованные К40П-3, а также термостойкие К40У-9 (до + 125 °С).

Рис. 4. Бумажные конденсаторы: а - КБГ -И; б - КБГ -М; в -КБГ-МП; г - КБГ -МН; 3 -БГМ; е - БМ

Технология изготовления бумажных конденсаторов включает намотку секций, прессование, сушку, пропитку и сборку.

Металлобумажные конденсаторы. Металлобумажные конденсаторы получили широкое распространение, так как они имеют относительно малые габариты (малый объем и вес на единицу емкости) и в то же время обладают хорошими изоляционными свойствами. Обкладки металлобумажного конденсатора выполнены в виде слоя металла толщиной до сотых долей микрона. Металл наносят на бумажную ленту методом испарения под вакуумом.

Металлобумажные конденсаторы выпускают в металлических герметизированных корпусах прямоугольной или цилиндрической формы. Они имеют маркировку МБГП (металлобумажные герметизированные в корпусе прямоугольной формы), МБГЦ (металлобумажные герметизированные в корпусе цилиндрической формы), МБ ГО (металлобумажные герметизированные, один слой диэлектрика), МБГЧ (металлобумажные герметизированные частотные), МБ Г (металлобумажные герметизированные термостойкие).

В зависимости от назначения эти конденсаторы изготовляют емкостью от 0,025 до 30 мкф на рабочие напряжения от 160 до 1500 в. .Конденсаторы МБМ (металлобумажные малогабаритные) на рабочее напряжение 160 в предназначены для работы в аппаратуре на полупроводниковых приборах. Некоторые типы металло-бумажных конденсаторов показаны на рис. 5.

В качестве металлического покрытия металлобумажных конденсаторов обычно применяют цинк, алюминий и никель. Так как нанесенный на бумагу слой металла очень тонок и склонен к окислению, срок пребывания металлизированной бумаги на открытом воздухе ограничен. Покрытия из алюминия и никеля по сравнению с цинковым менее подвержены коррозии.

Металлобумажные конденсаторы самовосстанавливаются после электрического пробоя. Самовосстановление происходит вследствие того, что запасенный в конденсаторе или поступающий к нему извне электрической энергии оказывается достаточно для испарения слоя металла в месте пробоя и обособления тем самым поврежденного участка от остального металлического покрытия. Наилучшими свойствами самовосстановления обладают конденсаторы с цинковым покрытием.

Эффект самовосстановления позволяет изготовлять металлобумажные конденсаторы с одним слоем диэлектрика в отличие от конденсаторов с обкладками из фольги.

Металлобумажные конденсаторы, как и обычные бумажные, подвергают пропитке, которой предшествует тщательная вакуумная сушка.

Пленочные конденсаторы. В качестве диэлектрика в конденсаторах этой группы применяют органические высокомолекулярные пленки. Некоторые типы пленочных конденсаторов показаны на 6. При их производстве наибольшее применение получили пленки из полистирола и фторопласта. Полистирол относится к чис-неполярных диэлектриков и поэтому широко применяется для производства конденсаторов, работающих как в низкочастотных, так и в высокочастотных цепях.

Рис. 5. Металлобумажные конденсаторы: а - МБГП ; б - МБГЦ ; в -МБГО; г -МБГТ

Полистирольные конденсаторы характеризуются малым тангенсом угла диэлектрических потерь в широком интервале частот, относительно малым температурным коэффициентом емкости (-150-Ю-6 на ГС) и высоким сопротивлением изоляции. Существенным недостатком полистирольных конденсаторов. является их низкая термостойкость (предельная рабочая температура 60-70° С).

Высокой термостойкостью обладают конденсаторы, где диэлектриком служит фторопласт-4. Эти конденсаторы могут длительно работать при температурах до 200 и даже 250° С при кратковременной нагрузке. Фторопласт-4 неполярен. К числу полярных органических диэлектриков относится фторопласт-3. Конденсаторы, в которых диэлектриком служит фторопласт-3, применяют только в Цепях низкой частоты или постоянного тока ввиду повышенного значения тангенса угла диэлектрических потерь.

Секции пленочных полистирольных конденсаторов изготовляют на обычных намоточных станках, применяемых при производстве бумажных конденсаторов. В качестве обкладок в пленочных поли-стирольных конденсаторах используют алюминиевую фольгу. Толщина пленки 15-20 мкм\ толщина фольги 7,5 мкм.

Для уменьшения габаритов конденсаторов используют металлизированную полистирольную пленку, при этом надежность конденсатора сохраняется, а габаритные размеры уменьшаются в 5-6 раз по сравнению с конденсаторами, имеющими алюминиевые фольговые обкладки.

Рис. 6. Пленочные конденсаторы: О-ПГТ ; б-ПМ; e-ПСО ; г-ФГТИ

В качестве основного металла для обкладок применяют цинк, который осаждают на тонкий слой олова. Эти конденсаторы называют металлопленочными. Металлопленочные конденсаторы заключены в прямоугольные металлические корпуса с керамическими изоляторами или в трубчатые алюминиевые корпуса, залитые с торцов эпоксидной смолой.

Для изготовления конденсаторов из фторопласта-4 применяют пленку толщиной от 5 до 40 мкм. Обкладками в них служит алюминиевая фольга толщиной 7,5 мкм. Фторопластовые конденсаторы делят на две группы: низковольтные, цилиндрический корпус которых выполнен из алюминия и имеет с торцовых сторон крышки из фторопласта-4, закрепленные завальцовкой краев корпуса, и высоковольтные - в керамических цилиндрических корпусах, с двух сторон корпуса которых приварены колпачки из инвара, что обеспечивает вакуумплочную герметизацию. Корпус высоковольтного

сонденсатора наполнен под давлением азотом, чтобы предотвратить возможный электрический пробой между закраинами обкладок и ионизацию газа.

Промышленностью выпускаются пленочные полистирольные конденсаторы ПО (открытый) и ПМ (малогабаритный) и фторопласто-вые для радиоаппаратуры низких напряжений (не более 1 кв) конденсаторы ФТ (термостойки до +200 °С). Из новых типов пленочных конденсаторов можно отметить конденсаторы К72П-6 (термостойкий, до+200 °С), К73П-2 (металлопленочный) и К76П-1 (лакопленоч-ный).

Электролитические конденсаторы. Электролитические конденсаторы разделяют на высоковольтные с рабочим напряжением 250- 450 в (емкость несколько сотен микрофарад), применяемые главным образом в сглаживающих фильтрах выпрямителей и развязывающих фильтрах, в анодных цепях экранных сеток, и низковольтные с рабочим напряжением 6-60 в (емкость до нескольких тысяч микрофарад), применяемые в полупроводниковой технике.

К. первой группе можно отнести конденсаторы КЭ (конденсаторы электролитические), изготовляемые на номинальные емкости от 5 до 2000 мкф и рабочее напряжение от 8 до 500 в. По конструкции они бывают трех видов: КЭ-1, КЭ-2 и КЭ-3.

К этой группе относят также конденсаторы ЭГЦ (конденсаторы электролитические герметизированные цилиндрические) емкостью от 5 до 50 мкф на рабочие напряжения от 6 до 500 в.

Ко второй группе можно отнести конденсаторы ЭМ (электролитические малогабаритные) и ЭМИ (электролитические миниатюрные). Они предназначены для работы в цепях постоянного и пульсирующего тока транзисторных малогабаритных узлов. Номинальное напряжение постоянного тока 3 в конденсаторов ЭМИ и от 4 до 150 в конденсаторов ЭМ, номинальная емкость 0,5; 1,25 и 10 мкф для ЭМИ и от 0,5 до 50 мкф для ЭМ. Допустимые отклонения действительной величины емкости от номинальной: от +80 до -20% для конденсаторов емкостью 0,5 мкф-, от + 200 до -10% для конденсаторов емкостью 1,25 и 10 мкф. Интервал рабочих температур от -20 до +50° С при относительной влажности воздуха не более 98% и атмосферном давлении 720-780 мм рт. ст.

Среди новых видов малогабаритных алюминиевых электролитических конденсаторов промышленностью выпускаются конденсаторы К50-3 на рабочие напряжения от 6 до 450 в, К50-ЗИ (импульсные), К50-6 (неполярные) и др.

На рис. 7 показаны типы некоторых электролитических конденсаторов, диэлектриком в которых служит оксидная пленка, обра зованная на алюминиевой фольге, выполняющей роль первой об кладки (анод) конденсатора, вторая обкладка - электролит, соприкасающийся с оксидной пленкой. Вторая лента из фольги (катодная) служит токоотводом к элек тролиту.

Оксидная пленка имеет тол щину 0,01-1,5 мкм и обладает униполярной (односторонней проводимостью, поэтому электролитические конденсаторы могут работать только в цепях постоянного или пульсирующего тока.

По конструкции и методу изготовления электролитические конденсаторы бывают жидкост ные (мокрые), оксидированный алюминиевый анод которых на ходится в жидком или полу жидком электролите, и сухие, получаемые намоткой лент алюминиевой фольги (оксидированной анодной и неоксидирован-ной катодной) и разделенные волокнистой прокладкой, пропитанной пастообразным или полужидким электролитом.

Наиболее широкое применение получили сухие электролитические конденсаторы. Для анодов этих конденсаторов применяют материал с содержанием от 99,8 до 99,99% алюминия и минимальным количеством железа.

Алюминиевая анодная фольга, применяемая в электролитических конденсаторах, имеет толщину 50-150 мкм.

Менее жесткие требования предъявляют к алюминию, используемому для изготовления катодов; в нем допускается до 0,4% примесей. Толщина катодной фольги 7,5-16 мкм.

В сухих электролитических конденсаторах для прокладки между алюминиевыми лентами применяют специальные сорта бумаги и хлопчатобумажной ткани, пропитанные электролитами.

В последнее время промышленность широко выпускает электролитические конденсаторы с диэлектриком из оксидной танталовой пленки, которая по сравнению с алюминиевой имеет более высоко-, значение диэлектрической проницаемости.

Рис. 7. Электролитические конденсаторы: а - КЭ 3; б -КЭ-1-ОМ; в -КЭ-2М; г - КЭГ -2; д - КЭГ -1М

Танталовые конденсаторы значительно меньше по габаритам, более надежны и имеют лучшие электрические характеристики, чем конденсаторы на основе алюминиевой оксидной пленки. Емкость п тангенс угла диэлектрических потерь сухого танталового конденсатора незначительно изменяются с изменением температуры вплоть до -60° С.

Жидкостные танталовые конденсаторы имеют цилиндрический анод, изготовленный из прессованного порошка тантала, термически обработанного в вакууме. Термическая обработка необходима для спекания зерен танталового порошка. Получаемая при этом пористая структура анода характеризуется большой активной поверхностью, способствующей увеличению емкости конденсатора. Этот способ увеличивает действующую поверхность анода в 40-50 раз по сравнению с герметической поверхностью цилиндра.

Диэлектриком в конденсаторе является тонкая пленка окиси тантала на поверхности зерен, а роль второй обкладки выполняет кислотный электролит.

На рис. 8 показано устройство жидкостного электролитического танталового конденсатора ЭТО .

Конденсатор ЭТО (электролитический танталовый с объемнопори-стым анодом) имеет несколько разновидностей: ЭТО -1, ЭТО -2 и ЭТО -3,4. Модификацией этого типа являются конденсаторы К52-2 и К52-3.

Из сухих танталовых конденсаторов выпускаются конденсаторы ЭТ (электролитический танталовый) и ЭТН (неполярный).

Дальнейшим конструктивным развитием конденсаторов этой группы являются танталовые конденсаторы с твердым электролитом. Анод такого конденсатора изготовлен в виде цилиндра из пористого спеченного тантала. Слой диэлектрика (окись тантала) на поверхности спрессованных частиц получают электролитическим путем. Роль второй обкладки в этом конденсаторе выполняет слой Двуокиси марганца, наносимый методом пиролиза (разложения) азотнокислого марганца.

Рис. 8. Устройство жидкостного электролитического танталового конденсатора ЭТО с объемно-пористым анодом: I - вывод; 2 - текстолитовое кольцо; 3 - тапталовая крышка; 4 - резиновое кольцо: 5 - электролит; 6 - анод; 7 -вкладыш из химически стойкого металла; 8 - стальной корпус; 9 - вывод катода; 10 - тан таловый стержень; 11 -фторопластовое кольцо

Температурная характеристика емкости конденсатора с твердьщ электролитом выгодно отличается от характеристики жидкостных электролитических танталовых конденсаторов, особенно при отрицательных температурах, когда жидкие электролиты густеют или затвердевают. Потери в конденсаторе с твердым электролитом мало зависят от температуры и сохраняются на одном уровне до весьма низких температур. Кроме того, при работе на высокой частоте характеристики конденсаторов оказываются также более благоприятными, чем у танталовых конденсаторов жидкостного типа. Длительное хранение конденсаторов с пористым танталовым анодом и твердым электролитом показало, что электрические характеристики их практически не меняются во времени.

Стеклоэмалевые конденсаторы (рис. 9). В конденсаторах этой группы диэлектриком являются тонкие слои стеклоэма-ли, а обкладками - серебряные пленки, наносимые на стекло-эмалевые слои методом вжигания. Примерный состав эмали: 15- 25% Si02; 3-11% Na20 + К20; 15-25% РЬО , остальное – окиси других двухвалентных металлов.

Стеклоэмалевые конденсаторы КС-1 и КС-2 имеют интервал рабочих температур от -60 до +100° С; сопротивление изоляции не менее 20 ООО Мом; тангенс угла потерь при температуре +20±5° С не более 15-1Q-4, а при + 100±5°С не более 20- Ю-4, температурный коэффициент емкости в интервале температур от +20 до 100° С равен +(65±35)-10-6; допускаемые отклонения ±2, ±5, ±10, ±20%.

Стеклоэмалевые конденсаторы применяют в радиоаппаратуре наравне со слюдяными и керамическими.

Особенности крепления к корпусу выводов конденсаторов КС создают некоторые неудобства при формовке выводов, что часто вызывает брак (отслоение пайки). Поэтому с конденсаторами КС необходимо осторожно обращаться на всех операциях, включая и регулировку.

Стеклоэмалевые конденсаторы постоянной емкости КС-1 предназначены для работы в цепях постоянного и переменного тока, а также в импульсных цепях. Интервал рабочих температур от -60 до +100 °С; относительная влажность до’98%, номинальное напряжение постоянного тока 300 в. Температурная стабильность емкости не более 0,1%. Допустимые отклонения действительных величин емкостей от номинальных: ±2% и ±5%.

Рис. 9. Стеклоэмалевый конденсатор

Подстроенные конденсаторы. Подстроечные конденсаторы (триммеры) применяют для подстройки высокочастотных колебательных контуров в процессе регулировки. Их изготовляют с воздушным или керамическим диэлектриком и для повышения стабильности емкости применяют керамические основания.

Рис. 10. Подстроечные конденсаторы: а - с воздушным диэлектриком; б - с керамическим диэлектриком; 1 - статор; 2 -ротор; 3 - выводы; 4 - отверстия для крепления

Керамические подстроечные конденсаторы КПК рассчитаны на рабочее напряжение 250 в и служат в основном для подстройки контуров высокой частоты в приемниках.

Конденсаторы КПК -1 имеют минимальные величины емкости 2, 4, 6 и 8 пф и максимальные соответственно 7, 15, 25 и 30 пф.

Конденсаторы КПК -2 и КПК -3 имеют минимальные емкости 6, 10 и 25 пф и максимальные 60, 100 и 150 пф.

Для малогабаритной аппаратуры выпускаются подстроечные конденсаторы КПК -МН (малогабаритные для навесного монтажа) и КПК -МП (малогабаритные для печатного монтажа).


Используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно , в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными.

В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности? В этом и попробуем сейчас разобраться.

Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, . Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой.

Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора.

Отрицательная обкладка (катод) - просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов.

Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.