Что называется силой звука. Единицы измерения громкости. Диаграмма кривых равной громкости

Человеческий голос характеризуется двумя уникальными для живых существ формами проявления, к которым относятся пение и речь. Механизм доставки вещества голосообразования - воздуха, в общих чертах одинаков и при разговоре и при пении. При голосообразовании воздух доставляется легкими во время фазы выдоха и, поступая восходящей струей через бронхи и трахею озвучивается в гортани. Однако оформление голоса и включение его в разговорную речь или пение происходит различно, поскольку разные конечные цели этих голосовых феноменов требуют применения соответственных акустических принципов использования голосовой функции.

В случае речи на первом месте стоит задача формирования разговорных голосовых сигналов - фонем. Фонему можно рассматривать как смесь элементарных звуков различной частоты: некоторые из них хорошо слышимы, другие едва уловимы. Однако во всех случаях фонема характеризуется длительностью, силой и частотой. В момент произнесения фонема может изменяться по длительности и силе, но по частоте она остается неизменной.

Следует подчеркнуть, что движения нашего тела и сокращения наших собственных мышц генерируют звуки, которые мы можем услышать, если заткнем уши. Эти низкочастотные шумы близки к пороговым значениям для нашего слуха в диапазоне низких частот (наш слух невосприимчив ровно настолько, чтобы в обычных условиях мы этих звуков не слышали). Для человека оптимальными являются частоты от 200 до 4000 Гц. В этом диапазоне наши уши и голосовые связки исключительно приспособлены друг к другу для осуществления максимально эффективной обратной связи при помощи речи, причем полоса частот достаточно широка, чтобы мы могли использовать модуляцию частот в качестве носителя информации. Диапазон воспринимаемых ухом частот находится в пределах от 15-16 до 20 000 - 22 000 Гц. Наименее чувствительно ухо к низким частотам; например его чувствительность к тону в 100 Гц в 1000 раз ниже, чем к тону в 1000 Гц. Высокочастотная часть диапазона, доступного уху, удивительна. В детстве некоторые способны хорошо слушать частоты порядка 40 000 Гц. с. 110. Слух с участием костной проводимости играет важную роль в процессе речи. Когда вы напеваете с закрытым ртом, эти звуки в значительной степени слышны вам благодаря костной проводимости.

Если заткнуть уши пальцами, то такие звуки станут значительно слышнее. Таким образом, во время разговора и пения вы слышите два типа звуков - одни через костную проводимость, другие через воздушную. Естественно, что другой человек слышит только звуки, проводимые воздухом. В этих звуках некоторые низкочастотные компоненты колебания голосовых связок теряются. Этим объясняется, почему человек с трудом узнает свой собственный голос, когда он слышит его в магнитофонной записи.

"Принято считать, что звуки голоса образуются в следствии колебания голосовых связок. Колебания эти вызываются прохождением воздушной струи через голосовые связки на выдохе. Издавать звук на вдохе практически невозможно, немногие исключения как бы подтверждают это правило. На вдохе звук может возникать при зевании, при фокусах некоторых чревовещателей, также на вдохе звук и-и-и издает осел в своем всем известном крике << И-а, и-а, и-а! >> (звук а-а-а в этом случае издается на выдохе)" Как акустический феномен человеческий голос нельзя заменить ничем, даже самыми современными звукопродуцирующими установками. Голос человека может быть речевым, певческим, шепотным. Человек может также кричать, стонать, имитировать различные звуки. По модуляции голоса мы можем судить о психическом состоянии человека, его возможных поведенческих реакциях в различных ситуациях.

Сила звука измеряется в единицах, называемых беллами - в честь А.Г. Белла - изобретателя телефона. Однако на практике используют десятые доли белла, т.е. децибелы.

Для сравнения приведем таблицу в децибелах:

Шепот, шелест листьев - 20-30

Тихая речь 30-40

Разговорная речь 40-60

Громкая речь. Кашель 60-70

Оркестр. Шум автомобиля 70-80

Крик. Шум поезда, мотоцикла 80-90

Водопад Ниагара. Шумный заводской цех 90 - 100

Орудийный выстрел 100-120

Шум реактивного двигателя 120-140

Максимальным порогом силы звука для человека является интенсивность в 120-130 децибелл. Звук такой силы вызывает боль в ушах.

В качестве курьеза хочется привести один из мировых рекордов из знаменитой "Книги рекордов Гиннеса". 125 децибелл- такую силу голоса продемонстрировала на соревнованиях 14 -летняя шотландская школьница, перекричав взлетающий самолет Боинг. имеет и другое значение, особенно актуальное в наше время: это наше с вами мнение, которое мы высказываем на выборах, голосуя за того или иного депутата. В немецком языке от слова Stmme - голос происходит слова Stimmung - настроение. От латинского слова sonare (звучать) происходит слово persona -маска, которая в античные времена закрывала лицо актера. Ее меняли в течение спектакля в зависимости от характера персонажа. Впоследствии слово persona приобрело значение персоны - юридического лица, человеческого индивидуума.

Речь - это особая и наиболее совершенная форма общения между людьми. Когда мы говорим, мы вообще никогда не задумываемся над тем, как надо вдохнуть, как оформить рот, какое положение должен занять язык и т.п. Все происходит автоматически, бессознательно.

Произнесение звуков тесно связано с дыханием. Речь и пение это всегда - выдох. Процесс дыхания во время разговора имеет ряд достаточно существенных отличий от дыхания молчащего человека в спокойном состоянии. Эти отличия связаны прежде всего с временными изменениями во всех трех фазах дыхания: длина выдоха существенно удлиняется, пауза и возврат дыхания становятся очень короткими. Выше мы уже говорили, что логика сценической или вокальной фразы часто ведет к ликвидации паузы, а фаза выдоха, во время которой озвучивается воздушная струя, существенно удлиняется. Условия разговорной или музыкальной фразы в ораторской или сценической речи, а особенно пение может потребовать длительности выдоха в 15-25 сек. "В таких случаях, конечно, быстрый вдох не может осуществляться только через нос, а совершается одновременно и через нос и через рот, а иногда даже в основном через рот. Дыхание через рот во время пения вызвано необходимостью и не является особенным отклонением о гигиены дыхания, поскольку применяется кратковременно. В процессе речи почти в двое уменьшается число дыхательных движений, чем при обычном (без речи) дыхании. Процесс пения также ведет к сокращению общего количества числа дыхательных движений. Зато в обеих случая резко возрастает их интенсивность. В речи и пении увеличивается скорость прохождения воздушной струи, поскольку для более длительного выдоха необходим и больший запас воздуха. Поэтому в момент речи и пения объем вдыхаемого и выдыхаемого воздуха увеличивается примерно в три раза. Вдох (возврат дыхания) становится более коротким и глубоким, а выдох приобретает ещё более специфический характер. "Он становится активным, принудительным мускульным актом, поскольку особенно важную роль в нем играют мышцы брюшного пресса в сочетании с особым тонусом мышц таза и промежности. Это обеспечивает длительность выдоха и способствует увеличению давления воздушной струи, без чего невозможна ни речь ни пение.

Исследования показали, что при пении относительно небольшое количество воздуха (1000 - 1500 см3) позволяет обеспечить выдоха, составляющую 15-20 сек. Этого вполне достаточно, чтобы исполнить самую продолжительную фразу вокального материала, длящуюся 18 сек.

"Важное значение при контроле за певческим голосообразованием имеют резонаторные ощущения. Каждый певец хорошо знает, что при пении у него начинают вибрировать грудная клетка и лицевая часть головы. Это дрожание принято называть грудным и головным резонированием. Голос считается хорошо поставленным в пении, когда он на всем протяжении диапазона << окрашивается грудным и головным резонированием>>. От ощущение резонирования звука в голове и груды получили свое название регистры голоса - головной и грудной. Голос при хорошем головном резонировании ярок, звонок, <<металличен>>, при грудном - насыщен.

Ощущение голоса << в маске >> - один из показателей правильной организации певческого звука.В системе трехфазного дыхания принято считать, что не только певческий, но и разговорный голос должен быть окрашен и грудным и головным резонированием. Вспомните, сколь "неприятно" звучит речь человека, каждый звук которой резонирует только в носу.

В оперных театрах всех стран по крайней мере в течение столетия амплуа оперных певцов определяются исполняемыми партиями: первые, вторые, третьи партии и хористы. Это разделение в известной мере связано с мощностью голоса. Действительно, все оперные залы можно разделить на несколько категорий по их кубатуре:

Голосам, мощность которых достигает только 110-120 дб, дают в подобных залах только вторые партии, но они все же могут обеспечить первые партии в залах 2-й категории. Таким образом, амплуа в оперных театрах находится в зависимости от мощности голоса и кубатуры помещения.

Вот как характеризует звук человеческого голоса Федор Иванович Шаляпин, в своей книжке "Маска и душа": "Звук должен умело и компактно опираться на дыхание, как смычек должен умело и компактно прикасаться к струне, скажем виолончели и по ней свободно двигаться. Точно так же, как смычек, задевая струну не всегда порождает только один протяжный звук, а благодаря необыкновенной своей подвижности на всех четырех струнах инструмента вызывает и подвижные звуки, - точно также и голос, соприкасаясь с умелым дыханием, должен уметь рождать разнообразные звуки в легком движении. Нота, выходящая из-под смычка или из-под пальца музыканта, будет ли она протяжной или подвижной, должна быть каждая слышна в одинаковой степени. И это же непременно для нот человеческого голоса. Так, что уметь << опирать на грудь>>, << держать голос в маске>> и т.п. - значит уметь правильно водить смычком по струне- дыханием по голосовым связкам, и это, конечно необходимо."

"Ведь все это очень хорошо - продолжает далее Шаляпин,-<< держать голос в маске>>, << упирать в зубы>> и т.п., но как овладеть этим грудным, ключичным или животным дыханием - диафрагмой, чтобы уметь звуком изобразить ту или другую музыкальную ситуацию, настроение того или другого персонажа, дать правдивую для данного чувства интонацию? Я разумею интонацию не музыкальную, т.е. содержание такой-то ноты, а окраску голоса, который ведь даже в простых разговорах приобретает различные цвета. Человек не может сказать одинаково окрашенным голосом: << я тебя люблю >> и << я тебя ненавижу>>. Будет непременно особая в каждом случае интонация, т.е. та краска, о которой я говорю." (Шаляпин с. 80 -81).

"Наиболее важная особенность окраски звука - вторит Шаляпину болгарский фониатор И.Максимов- возможность путем включения эмоциональных звуковых элементов выражать психическое состояние индивидуума в самом широком смысле этого слова. Изменения окраски голоса могут очень точно отражать настроение, эмоции и убеждения говорящего соответственно их развитию и динамике изменений. Не напрасно Сократ сказал одному из своих учеников: << Говори, чтобы тебя видеть >>

"Качество голоса является зеркалом интеллекта и динамизма личности больного,- ссылаясь на исследования американских ученых, утверждает профессор Вильсон. Плохое качество голоса создает впечатление тупости и пассивности, а хорошие качества говорят о живом уме и положительной активности

"Профессор психологии британского университета в Манчестере Джон Коэн, пишут Плужников и Рязанцев,- недавно опубликовал результаты своих исследований скорости речи женщин и мужчин. Оказалось, что за 30 секунд женщина произносит 80 слов, а мужчина 50; за 60 секунд - женщина 116, а мужчина - 112. Разница заметнее на отрезке времени в 2 минуты: женщины 214 слов, мужчины - 152 слова.

Человеческий голос обычно рассматривается по таким основным параметрам, как частота (тоновый диапазон) , сила, длительность и тембр, которые можно анализировать по отдельности. Для характеристики певческого голоса используется также такая особенность голоса как вибрато, т.е. периодическое изменение высоты и силы голоса, или иначе говоря ровную пульсацию (вибрацию).

В результате изучения вибрато акустиками было установлено, что звук голоса воспринимается нашим слухом как красивый, льющийся, в том случае, когда вибрация совершается со скоростью 6-7 раз в секунду. Если же пульсация совершается реже или чаще, то голос становится менее приятным

Однако реальный человеческий голос - это единый, неделимый комплекс. Последнее особенно проявляется в пении, где голос, переходя в тона различных регистров, изменяет также и свою окраску, что влечет за собой изменение остальных качеств, таких как интенсивность, тональность, длительность и, особенно, дополнительных гармоник, в своей совокупности, определяющих тембральную окраску голоса.

"После мутации естественное проявление мужского и женского голосов имеют разновидности, акустически зависимые от основных качеств голоса: тонового диапазона, силы и тембра. Если сила голоса и тембр до известной степени являются взаимозависимыми и в основе своей связаны с одним и тем же анатомо-физиологическим механизмом, то тоновый диапазон зависит от быстроты нервно-мышечных реакций, реализующихся в быстрых колебательных движениях голосовых складок.

Высота издаваемого звука, как известно, зависит от числа колебаний в 1 секунду (струны, мембраны, голосовых складки и т.п.) и измеряется в герцах (герц - одно колебание в секунду). Голосовые складки человека способны приходить в колебательные движения не только сразу всей массой, а также и по частям, именно поэтому голосовые складки могут колебаться с различной частотой: примерно от 80 до 10 000 Гц и даже больше.

Тоновый диапазон т.е. пределы между самым низким и самым высоким звуком, который способен издать человеческий голос, определяется, обычно от 64 до 2700 Гц. При этом разговорный голос составляет лишь 1/10 от общего диапазона голоса.

W[ В американском городе Карсно-Сити уже свыше ста лет проводятся ежегодные конкурсы мастеров художественного свиста. На недавних соревнованиях победителем в разделе современных мелодий стал Джоэл Брендон. Его техника свиста не имеет себе аналогов в мире: если обычные люди свистят на выдохе, то Джоэл только на вдохе. Диапазон его возможностей составляет три октавы, а высвистываемые им ноты, удивительно чисты и благозвучны. Единственной его проблемой является полное отсутствие конкурентов, поскольку за более чем тридцать лет занятий свистом ему не встретился еще ни один человек, выступающий в его манере.

Мужские певческие голоса достигают тонового диапазона порядка 2,5 октавы, а женские нередко превышают 3 октавы. Наибольший тоновый диапазон для мужских голосов - 35 полутонов (черных и белых клавиш фортепьяно), а женских - 38 полутонов. Если учитывать также и крайне низкие тоны басовых голосов (43,2 Гц - "фа" контроктавы) и высокие свистящие тоны детских голосов (4000 Гц), то получится, что человеческие голоса охватывают 6 октав.

Тенор- альтино, обладающий особенно высокими нотами, звучит легко и прозрачно;

На втором месте среди мужских голосов стоит баритон, рабочий диапазон которого от << ля>> большой октавы до << ля >> первой октавы. Лирический баритон- голос, звучащий легко, лирично, близок по характеру к теноровому тембру, но все же иногда имеет типичный баритональный оттенок. Лирико-драматический баритон, обладающий светлым, ярким тембром и значительной силой, способен к исполнению как лирических так и драматических партий. Драматический баритон - это голос более темного звучания, большой силы, способный к мощному звучанию на центральном и верхнем участках диапазона. Партии драматического баритона более низки по тесситуре.

Бас- наиболее низкий и мощный мужской голос - имеет рабочий диапазон от << фа>> большой до << фа>> первой октавы. Высокий бас - певучий голос светлого и яркого звучания, напоминает баритоновый тембр. Такие голоса называют баритональными басами. Центральный бас обладает более широкими возможностями диапазона и носит ярко выраженный басовый характер тембра. Низкий (глубокий, профундовый) бас, кроме густого басового колорита и более короткого в верхнем участке диапазона голоса, обладает глубокими, мощными и низкими нотами.

Различают также ряд типов поставленных женских голосов. Сопрано- наиболее высокий женский голос, имеет рабочий диапазон от << до>> первой до << до >> третьей октавы. Колоратурное сопрано характеризуется легким, прозрачным звучанием, выраженной подвижностью. Голос колоратурного сопрано не достигает большой мощности, но обладает способностью нестись в зал, с исключительной чистотой и прозрачностью звучания. Лирико-колоратурное сопрано - голос более плотного, широкого звучания, по подвижности способный к исполнению как колоратурных так и лирических партий. Лирическое сопрано не обладает такой степенью колоратуры, но мощнее и шире по звучанию, звучит светло и серебристо.

Лирико- драматическое сопрано - широкий лирический голос более насыщенного грудного тембра. Драматическое сопрано отличается мощностью звучания и насыщенным драматическим тембром.

Сто лет назад слава Алисы Шоу, или как ее еще называли Маленькой Свистуньи была практически безгранична, каждая ее гастроль была сенсацией. Музыкальные критики захлебывались от восторга: "Неслыханно! Алиса Шоу свистит в пределах двух октав! Она владеет стаккато и трелями, тремоло и плавными переходами! Это не свист, а игра на невидимой волшебной флейте!".

Репертуар Алисы Шоу был безграничным: она исполняла все- от старинных баллад и народных песен до опер и инструментальных пьес; специально для нее писались музыкальные произведения.

Лондонские медики придирчиво исследовали ее голосовой аппарат и обнаружили, что секрет ее уникального дара таился в необычно высоком и узком небе, а также в искусном владении амбюшуром - умением правильно управлять мышцами рта.

Контральто - самый низкий и редко встречающийся женский голос, насыщенный грудным тембром на всем диапазоне от << фа >> малой до << фа >> второй октавы.

Наиболее распространенный разговорный голос у мужчин - баритон, у женщин обыкновенно голос октавой выше. В классической музыке басы обычно используют наиболее низкий звук "ре" большой октавы - 72,6 Гц., а в церковной музыке встречаются и более низкие ноты. Известно, что самым высоким тоном колоратурного сопрано является "фа" третьей октавы (1354 Гц) из знаменитой арии "Царицы ночи" в "Волшебной флейте " Вольфганга Амадея Моцарта при исполнении стаккато.

Некоторые всемирно известные певицы, такие как, Лукреция Агуяри, Дженни Линд, Има Сумак, Жозе Дрла и другие, перешагнули за обычные пределы высоты женского голоса и достигли тонов << а3>>, <<с4>> (2069 Гц), а Эрна Зак и Мадо Робен - <> (2300 Гц), при этом их исполнение отвечало всем требованиям, предъявляемым к оперному голосу. Подчеркнем, что Имма Сумак поет до сих пор, и поет прекрасно, а ей уже далеко за 80 лет.

Сила голоса имеет очень большое практическое значение для словесного общения между людьми, особенно на расстоянии. Сила певческого голоса весьма существенна для исполнения произведений классического репертуара без микрофона. Разговорный голос имеет довольно ограниченную силу с небольшим интервалом между <<пиано>> и <<форте>>. При интимном разговоре сила голоса равна приблизительно 30 Дб. При обычном разговоре в помещении площадью около 100 м2 сила голоса не превышает 40 Дб. Слабые голоса достигают уровня 25 Дб, а при вспышке гнева эта сила возрастает до 60 Дб. В помещении объемом 1000 м2 голос оратора должен обладать силой в 55 Дб, а на открытом воздухе - 80 Дб.

У певцов сила голоса сила голоса достигает значительных величин, возрастая от 30 до 110 и даже 130 Дб на расстоянии метра от поющего.Величина силы голоса в 130 Дб на расстоянии 1 м от ротового отверстия, с учетом поглощения звуковой энергии в глотке и полости рта, соответствует фактической силе 160-170 Дб, развиваемой на уровне гортани. Подобные огромные величины силы с соответствующими интервалами интенсивности не могут быть достигнуты ни какими музыкальными инструментами с вибрирующими частями, из каких бы материалов ни был изготовлен механизм, имитирующий голосовые складки. Во время кашля скорость воздуха в трахее достигает скорости звука (около 320 м/сек), на уровне гортани, она снижается до скорости урагана (около 45 м/сек), на уровне губ - примерно 7 м/сек. При крике голос усиливается до 100 ДБ, а высота тона возрастает до 173-254 гц.

Голосовые мышцы - самые быстрые мышцы человеческого организма. Они обладают большой выносливостью и исключительной устойчивостью к значительно повышенному потреблению кислорода мышечной тканью. Подобно миокарду, с которым они имеют общее происхождение, грудным мышцам некоторых перелетных птиц голосовые мышцы в значительной степени способны к анаэробному метаболизму.

Речь понятна в том случае, если она громе окружающего шума на 6 ДБ. Расстояние между разговаривающими особенно важно на улице, где воспринимаемая громкость речи уменьшается на 6 ДБ при удвоении расстояния. Расстояние не столь важно при разговоре в помещении. При уровне шума ниже 48 ДБ люди говорят с громкостью в 55 ДБ при расстоянии между ними около 1 м. Когда уровень фонового шума равен 48-70 ДБ, громкость голоса увеличивается до 67 ДБ. При возрастании уровня шума на 1 ДБ (расстояние между собеседниками 1 м) громкость голоса повышается на 0,6 дб.

Наиболее целесообразным для речи является нижнереберный тип дыхания с активным участием диафрагмы, поскольку при этом создаются самые благоприятные условия для работы голосового аппарата. Во время речи необходимо не только обеспечить организм достаточным количеством воздуха, но и экономно его расходовать и поддерживать необходимое подскладочное давление. Искусство дыхания состоит в том, чтобы во время речи не расходовать воздух без надобности. Отсутствие достаточного для речи количества воздуха в дыхательных путях вредно отражается на работе мышц голосовых складок. Слабость струи выдыхаемого воздуха компенсируется повышением напряжения этих мышц, что в дальнейшем приводит к их утомлению и слабости, в результате чего ухудшается качество голоса.

Основная окраска детского голоса - его "серебристость". Каждые 2-3 года голос меняет свои качества. Из "серебристого" с диапазоном звучания 5-6 нот он становится насыщенным, обретает полноту звучания, "металлический" оттенок, диапазон увеличивается до 11-12 нот, а на 6 -м году он равен септиме. Примерный диапазон голоса для мальчиков и девочек таков: в возрасте от 7 до 10 лет от << фа>> первой до << до >> второй октавы, т.е. равен почти одной октаве, у детей от 10 до 14 лет от <<до>> первой до << ре>> второй октавы. В возрасте от 10 до 15 лет диапазон голоса значительно расширяется - от <<си>> малой до << фа>> второй октавы. Следует отметить, что у подростков этого возраста он нередко выходит за пределы указанных границ и может быть равен двум октавам.

Исследования показали, что пение оказывает благоприятное воздействие на организм ребенка и его интеллект. При соблюдении правил охраны голоса пение является своеобразной гимнастикой, которая способствует развитию грудной клетки, регулирует функцию сердечно-сосудистой системы и прививает ребенку художественно-эстетические навыки.

Очень важно подчеркнуть, что одном из условий развития правильного, нормального голоса у детей является непродолжительное, негромкое пение в рамках возрастного диапазона. Поскольку в последнее время все больше и больше становится профессий, использующих голос в качестве основного инструмента (лекторы, ораторы, педагоги, воспитатели детских учреждений, вокалисты, артисты, дикторы и др.), то существенное значение приобретает профилактика заболеваний голосового аппарата. Система трехфазного дыхания, являясь, по - преимуществу, профилактической системой, ориентируется на комплексное, всестороннее укрепление всего дыхательного аппарата человека, в том числе и речевого аппарата, как составной части первого, на основе правильного, естественного, трехфазного дыхания.

Именно поэтому, первая часть книги, посвященная тренировке правильного дыхания построена таким образом, что, овладев первоначальными навыками правильного дыхания, т.е. начав укреплять собственно дыхательную мускулатуру, читатель постепенно переходит к тренировке речевого аппарата и диафрагмы.


Основные термины и определения

Звук – разновидность кинетической энергии, которая называется « » и представляет собой пульсацию давления, возникающую в физической среде при прохождении звуковой волны.

Интенсивность звука – сила звука, средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны в единицу времени.

Громкость звука – субъективная величина слухового ощущения, которая зависит от интенсивности звука и его частоты. При неизменной частоте громкость звука растет с увеличением интенсивности. При одинаковой интенсивности наибольшей громкостью обладают звуки в диапазоне частот 700-6000 Гц. Ну- левой уровень громкости звука соответствует звуковому давлению 20 мкПа и силе звука 10-12 Вт/м2 при частоте 1 кГц.

Звуковое давление – звуковая энергия, которая попадает на единицу площади, расположенную в заданном направлении от источника звука и удаленную от него на определенное расстояние (как правило, на 1 м). Звуковое давление измеряется в паскалях (Па).

Децибел – логарифмическая единица уровней, затуханий и усилений, безразмерная носительная характеристика, позволяющая сравнивать между собой нужные величины:

Величина в децибелах = 10 lg (вычисляемая величина/опорная (базисная) величина).

Элементарные сведения о звуке


В звуке можно выделить следующие определяющие элементы: высота (высокий/низкий), интенсивность (слабый/сильный), тембр (мягкий, ясный и т.д.). Тембр определяемый гармониками, формирует слуховые ощущения, то есть, позволяет отличать один музыкальный инструмент или голос от другого. Скорость, с которой распространяется звук, строго связана с характером (природой) упругих сред. Далее мы будем рассматривать прохождение звука только через воздух. Скорость звука в воздухе составляет примерно 340 м/с и меняется с изменением температуры. Для расчета скорости звука при различных температурах, используется следующая формула:

V – скорость звука в м/с

°C – температура воздуха в градусах Цельсия

Если частота звуковых колебаний находится между 20 и 20000 раз в секунду (Гц), то данные вибрации производят у человека слуховое ощущение. Считается, что человек слышит звуки в диапазоне частот от 16 Гц до 20 кГц, но практически слышимый диапазон находится в пределах от 100 Гц до 10 кГц (низкий мужской голос 400Гц, женское сопрано 9 кГц). Отношение скорости звука к его частоте есть расстояние, пройденное звуковой волной за один период, по другому называется длиной звуковой волны:


где
λ длина волны
V – скорость звука, м/с
f – частота, Гц

Полный период колебания волны (звукового давления) состоит из полупериода сжатия (повышения давления) и последующего полупериода разряжения молекул воздуха (понижения давления). Звуки с большей амплитудой (громкие) вызывают более сильное сжатие и разряжение молекул воздуха, чем звуки с меньшей амплитудой (тихие).

В зависимости от контекста существует множество различных определений звука:

Звук – это упругие волны, продольно распространяющиеся в среде и создающие в ней механические колебания. Чтобы понять, как распространяются данные волны, дополним это определение:
Звук – это процесс последовательной передачи колебательного состояния в упругой среде.

В современной физике утвердился взгляд, при котором многие процессы отождествляют с энергией.

Звук – это разновидность кинетической энергии, которая называется «акустической» и представляет собой пульсацию давления, возникающую в физической среде при прохождении звуковой волны. Звук распространяется по волновым законам, следовательно, к нему применимы такие общие физические понятия, как интерференция и дифракция. Результатом интерференции может быть как усиление, так и уменьшение уровня звука, например, при сложении одного и того же сигнала, но с различной фазировкой. При расчете параметров звукового поля на открытых пространствах следует учитывать множество различных факторов, например, влажность, ветер, температуру, например, при высокой температуре звук распространяется вверх, а при низкой температуре – вниз.

Частотный и динамический диапазоны


На рис. 2.3 приведены частотные и динамические диапазоны различных звуковых источников. Из рисунка видно, что динамический диапазон человеческой речи лежит в пределах от 30 до 100 дБ. Уровень 30 дБ соответствует тихому разговору, 100 дБ сильному крику. Под порогом слышимости подразумевают минимальные значения звукового давления, при которых звук еще воспринимается человеком. Принято считать, что человек слышит сигналы от 1 до 130 дБ. Уровень 1 дБ называется порогом слышимости, 130 дБ – это болевой порог.


Рис. 2.3 Частотный и динамический диапазоны
различных звуковых источников

Уровень шума

Одним из наиболее важных параметров при расчете уровня звукового давления является уровень шума. Установлено, что человек способен (слышать) улавливать звуки с уровнем 1 дБ (20 мкПа, 10-12 Вт/м2), который называется порогом слышимости. Но это возможно только при хорошем слухе и в отсутствии шума. Так как в реальных условиях, шум всегда присутствует, то различить полезную (звуковую) информацию на фоне шума можно при условии, что уровень звука превышает уровень шума, как минимум на 3 дБ (в 2 раза). Для хорошей разборчивости данная разница должна состав-лять минимум 6 дБ (в 4 раза). В нормативной же документации данный запас составляет 15 дБ.


Рис. 2.4 Уровни шума для различных пространств

Анализ окружающей среды

Окружающая среда, в которой функционирует СОУЭ, должна рассматриваться как компонент системы. Тщательный анализ этой среды, является определяющим фактором в выборе элементов формируемой цепи. Для анализа окружающей среды наиболее часто используются два инструмента: измеритель уровня звука, которым оценивается окружающий уровень шума, и измеритель нелинейности, который показывает уровень искажения и деградации, которой подвергнут звуковой сигнал. Последний имеет передатчик и приемник, работающие с шифрованными сигналами (RASTI метод) для обеспечения величины разборчивости за несколько секунд с учетом реверберации окружающей среды. Данная величина характеризуется "индексом разборчивости" (между 0 и 1). Для объектов, специфика которых не критична с точки зрения акустики (торговые центры, офисы, дома) необходимость в применении более сложных измерителях отсутствует.

Реверберация

В акустике присутствует множество различных факторов, которые необходимо учитывать при выборе и расстановке звукового оборудования и . Одним из таких факторов является реверберация. Звук в закрытых или открытых пространствах распространяется по разному. Стены комнаты отражают звуковые волны, тогда как на открытой площадке волны проходят практически без столкновений с какими-либо препятствиями. В закрытом пространстве за счет отражений уровень звука выше. В открытом пространстве звук распространяется практически по прямой. Прямой звук идентичен оригиналу по качеству и форме. Отраженный звук, наоборот, сильно зависит от отражающей способности места (после неопределенного числа отражений, достигает слушателя со всех сторон, и слушатель не может точно установить точку его происхождения). Распространение звука в этом случае происходит через первичные и вторичные отражения исходного звука от горизонтальных и вертикальных поверхностей помещения. Уровень отражения в большой степени зависит от характера стен, типа материала, из которого они сделаны, их гладкости, поглощающих свойств и изменения поглощения на раз-личных частотах. Мебель также может играть решающую роль в распространении звука – в зависимости от ее расстановки и поглощающей способности. Слушателю приходится воспринимать как прямой, так и отраженный звук. Время, с момента, в который звуковой источник прекращает излучать до момента, в который звук больше не воспринимается, определяется как время реверберации. Замечено, что любая среда характеризуется собственной "музыкальной окраской", связанной с распространением отраженных звуков и временем реверберации, которое и характеризует эту среду. Единственной переменной в уже существующей структуре остается мебель. Наилучшие результаты могут быть получены, когда принимается во внимание конструкция мебели, материал, из которого она сделана и ее расстановка в помещении.

Реверберация – это явление, которое возникает, когда слышен не прямой звук от источника, а отраженный от встречающихся на пути звуковой волны препятствий или помех различного характера. Для предотвращения нежелательного воздействия отраженного звука на прямой необходимо, чтобы последний, при задержке более чем на 50 мс, достигал слушателя уменьшенным не более чем на 10 дБ. Время реверберации пропорционально объему окружающего пространства и обратно пропорционально суммарному поглощению поверхностей, составляющих ее. Отраженный звук, который достигает уха слушателя через 40-50 мс после прямого, расценивается как усиление, окраска первоначального звука. Отраженные звуки, которые доходят с задержкой 50-80 мс, наоборот, искажают первоначальный сигнал и могут стать причиной потери разборчивости.

Общие сведения о звуковом давлении

Звуковое давление – звуковая энергия, которая попадает на единицу площади, расположенную в заданном направлении от источника звука и удаленную от него на определенное расстояние (как правило, на 1 м). Звуковое давление измеряется в паскалях (Па).

Уровень звукового давления (англ. SPL, Sound Pressure Level) – значение звукового давления, измеренное по относительной шкале, отнесённое к опорному давлению Рspl = 20 мкПа, соответствующему порогу слышимости синусоидальной звуковой волны частотой 1 кГц. SPL измеряется в децибелах (дБ). Децибелы, в отличие от паскалей, чаще применяются на практике из-за большего удобства. Считается, что человек слышит в диапазоне 0-120 дБ (20 - 20000000 мкПа). В таблице 2.2 приведена зависимость между звуковым давлением в мкПа и уров-нем звука в дБ.

Звуковое давление (мкПа) Уровень звука (дБ)
20 0
60 10
200 20
600 30
2.000 40
6.000 50
20.000 60
60.000 70
200.000 80
600.000 90
2.000.000 100
6.000.000 110
20.000.000 120


Таблица 2.2

Зависимость уровня звукового давления от подводимой мощности

Слух, как и другие человеческие ощущения, воспринимает воздействие по логарифмическому закону (см. рис. 2.6). Для того чтобы удвоить звуковое давление, не достаточно удваивать число источников звука или электрическую мощность громкоговорителей, а необходимо удесятерять. Увеличение акустического давления может быть получено установкой нескольких громкоговорителей, расположенных близко друг к другу и ориентированных в одном направлении или при каждом удвоении мощности громкоговорителей, в любом случае, увеличение (или уменьшение) акустического давления будет ±3 дБ (в дальнейшем мы сформируем более точное правило). Для построения зависимости уровня звукового давления от подводимой мощности обратимся к теории. Мгновенное значение звукового давления в точке среды изменяется как со временем, так и при переходе к другим точкам среды, поэтому практический интерес представляет среднеквадратичное значение данной величины, называемое интенсивностью звука.

Интенсивность – это поток энергии в какой-либо точке среды в единицу времени, прошедший через единицу поверхности (1 м2), являющейся нормалью к направлению распространения звуковой волны (измеряется в Вт/м2). Интенсивность иначе называют силой звука. Интенсивность определяет громкость звука, которую мы слышим. Мы не можем померить ее непосредственно (особенно в закрытых помещениях), поэтому на практике данную величину связывают с мощностью источника логарифмическим соотношением.

]Обычно, децибелами принято измерять громкость звука. Децибел – это десятичный логарифм. Это значит, что увеличение громкости на 10 децибел показывает, что звук стал в два раза громче, чем изначальный. Громкость звука в децибелах обычно описывается формулой 10Log 10 (I/10 -12) , где I - интенсивность звука в ваттах/метр квадратный.

Шаги

Сравнительная таблица уровней шума в децибелах

В приведенной ниже таблице описаны уровни децибел в порядке возрастания, и соответствующие им примеры источников звука. Также предоставлена информация о негативных последствиях для слуха напротив каждого уровня шума.

Уровни децибел для разных источников шума
Децибелы Пример источника Влияние на здоровье
0 Тишина Отсутствуют
10 Дыхание Отсутствуют
20 Шепот Отсутствуют
30 Тихий фоновый шум на природе Отсутствуют
40 Звуки в библиотеке, тихий фоновый шум в городе Отсутствуют
50 Спокойный разговор, обычный фоновый шум для пригорода Отсутствуют
60 Шум офиса или ресторана, громкий разговор Отсутствуют
70 Телевизор, шум шоссе с расстояния 15.2 метров (50 футов) Заметка; некоторым неприятен
80 Шум завода, кухонного комбайна, автомойки с расстояния 6.1 метра (20 футов) Возможны повреждения слуха при длительном воздействии
90 Газонокосилка, мотоцикл с расстояния 7.62 м (25 футов) Высока вероятность повреждения слуха при длительном воздействии
100 Лодочный мотор, отбойный молоток Высока вероятность серьезных повреждений слуха при длительном воздействии
110 Громкий рок-концерт, сталелитейный завод Может быть сразу больно; очень высока вероятность серьезных повреждений слуха при длительном воздействии
120 Цепная пила, гром Обычно наступает моментальная боль
130-150 Взлет истребителя с авианосца Возможна немедленная потеря слуха, или разрыв барабанной перепонки.

Измерение уровня звука с помощью приборов

    Используйте ваш компьютер. Со специальными программами и оборудованием, несложно измерить уровень шума в децибелах прямо на компьютере. Ниже перечислены только некоторые способы, как это можно сделать. Обратите внимание, что использование более качественного записывающего оборудования всегда даст лучший результат; другим словами, микрофона встроенного в ваш ноутбук может быть достаточно для некоторых задач, но высококачественный внешний микрофон даст более точный результат.

  1. Используйте мобильное приложение. Для измерения уровня звука в любом месте, мобильные приложения придутся как нельзя кстати. Микрофон на вашем мобильном устройстве скорее всего не даст такого качества, как внешний микрофон, подключенный к компьютеру, но он может быть на удивление точным. Например, точность считывания на мобильном телефоне вполне может отличаться на 5 децибел от профессионального оборудования. Ниже приведен список программ для считывания уровня звука в децибелах для разных мобильных платформ:

    • Для устройств Apple: Decibel 10th, Decibel Meter Pro, dB Meter, Sound Level Meter
    • Для устройств на Android: Sound Meter, Decibel Meter, Noise Meter, deciBel
    • Для телефонов на Windows: Decibel Meter Free, Cyberx Decibel Meter, Decibel Meter Pro
  2. Используйте профессиональный измеритель децибел. Обычно это недешево, но, возможно, это самый простой способ получить точные измерения уровня звука, который вас интересует. Также такое устройство называют "измеритель уровня звука", это специализированное устройство (можно купить в интернет-магазине или специализированных магазинах), которые использует чувствительный микрофон для измерения уровня шума вокруг и выдает точное значение в децибелах. Так как подобные устройства не пользуются большим спросом, они можно быть достаточно дорогими, зачастую цены на них начинаются с $200 даже за устройства начального класса.

    • Обратите внимание, что измеритель децибел/уровня звука может называть несколько иначе. Например, другое похожее устройство под названием "измеритель шума" делает то же самое, что и измеритель уровня звука.

    Математическое вычисление децибел

    1. Узнайте интенсивность звука в ваттах/метр квадратный. В повседневной жизни, децибелы применяются как простая мера громкости. Однако, все не так просто. В физике децибелы часто рассматривают как удобный способ выражения "интенсивности" звуковой волны. Чем больше амплитуда звуковой волны, тем больше энергии она передает, тем больше частиц воздуха колеблется на ее пути, и тем интенсивнее сам звук. Из-за прямой связи между интенсивностью звуковой волны и громкостью в децибелах, есть возможность найти значение децибел, зная только интенсивность уровня звука (которая обычно измеряется в ваттах/метр квадратный)

      • Заметьте, что для обычных звуков значение интенсивности очень мало. Например, звук с интенсивностью 5 ×10 -5 (или 0.00005) ватт/метр квадратный соответствует приблизительно 80 децибелам, что приблизительно соответствует громкости блендера или кухонного комбайна.
      • Для лучшего понимания отношения между интенсивностью и уровнем децибел, давайте решим одну задачу. Для примера возьмем такую: давайте считать, что мы – звукорежиссеры, и нам нужно опередить уровень фонового шума в студии звукозаписи, чтобы улучшить качество записываемого звука. После установки оборудования, мы зафиксировали фоновый шум интенсивностью 1 × 10 -11 (0.00000000001) ватт/метр квадратный . Далее используя эту информацию мы можем вычислить уровень фонового шума студии в децибелах.
    2. Поделите на 10 -12 . Если вы знаете интенсивность вашего звука, вы можете легко подставить ее в формулу 10Log 10 (I/10 -12) (где "I" – интенсивность в ваттах/метр квадратный) чтобы получить значение в децибелах. Для начала поделите 10 -12 (0.000000000001). 10 -12 отображает интенсивность звука с оценкой 0 на шкале децибел, сравнивая интенсивность вашего звука с этим числом, вы найдете его отношение к начальному значению.

      • В нашем примере мы разделили значение интенсивности 10 -11 на 10 -12 и получили 10 -11 /10 -12 = 10 .
    3. Вычислим Log 10 от этого числа и умножим его на 10. Чтобы закончить решение, вам осталось лишь взять логарифм по основанию 10 от получившегося числа и затем, наконец, умножить его на 10. Это подтверждает, что децибелы – это логарифмическое значение по основанию 10 – другими словами, увеличение уровня шума на 10 децибел говорит об удвоении громкости звука.

      • Наш пример легко решить. Log 10 (10) = 1. 1 ×10 = 10. Поэтому, значение фонового шума в нашей студии равняется 10 децибел . Это достаточно тихо, но все еще улавливаемо нашим высококачественным звукозаписывающим оборудованием, потому нам, вероятно, нужно устранить источник шума для достижения более высокого качества записи.
    4. Понимание логарифмической природы децибел. Как было сказано выше, децибелы – это логарифмические значения с основанием 10. Для любого данного значения децибел, шум на 10 децибел большой – громче изначального в два раза, а шум больший на 20 децибел – в четыре раза и так далее. Это дает возможность обозначить большой промежуток интенсивностей звука, которые могут быть восприняты человеческим ухом. Самый громкий звук, который человек может услышать, не испытывая боли – в миллиард раз более громкий, чем самый тихий звук, который человек может услышать. Используя децибелы, мы избегаем использования огромных чисел для описания обычных звуков - вместо этого нам достаточно трех цифр.

      • Подумайте, что проще использовать: 55 децибел или 3 × 10 -7 ватт/квадратный метр? Оба значения равны, но вместо использования научной формы записи (в виде очень малой доли числа), гораздо удобнее использовать децибелы, которые являются своего рода простым сокращением для легкого повседневного использования.

Звуком называют механические колебания частиц упругой среды (воздух, вода, металл и т. п.), субъективно воспринимаемые органом слуха. Звуковые ощущения вызываются колебаниями среды, происходящими в диапазоне частот от 16 до 20 000 гц. Звуки с частотами, лежащими ниже этого диапазона, называются инфразвуком, а выше - ультразвуком.

Звуковое давление - переменное давление в среде, обусловленное распространением в ней звуковых волн. Величина звукового давления оценивается силой действия звуковой волны на единицу площади и выражается в ньютонах на квадратный метр (1 н/метр квадартный=10 бар).

Уровень звукового давления - отношение величины звукового давления к нулевому уровню, за который принято звуковое давление н/квадратный метр:

Скорость звука зависит от физических свойств среды, в которой распространяются механические колебания. Так, скорость звука в воздухе равна 344 м/сек при T=20°С, в воде 1 481 м/сек (при T=21,5°С), в дереве 3 320 м/сек и в стали 5 000 м/сек.

Сила звука (или интенсивность) - количество звуковой энергии, проходящей за единицу времени через единицу площади; измеряется в ваттах на квадратный метр (вт/м2).

Следует отметить, что звуковое давление и сила звука связаны между собой квадратичной зависимостью, т. е. при увеличении звукового давления в 2 раза сила звука возрастает в 4 раза.

Уровень силы звука - отношение силы данного звука к нулевому (стандартному) уровню, за который принята сила звука вт/м2, выраженное в децибелах:

Уровни звукового давления и силы звука, выраженные в децибелах, совпадают по величине.

Порог слышимости - наиболее тихий звук, который еще способен слышать человек на частоте 1000 гц, что соответствует звуковому давлению н/м2.

Громкость звука - интенсивность звукового ощущения, вызванная данным звуком у человека с нормальным слухом Громкость зависит от силы звука и его частоты, изменяется пропорционально логарифму силы звука и выражается количеством децибел, на которое данный звук превышает по интенсивности звук, принятый за порог слышимости. Единица измерения громкости - фон.

Порог болевого ощущения - звуковое давление или сила звука, воспринимаемые как болевое ощущение. Порог болевого ощущения мало зависит от частоты и наступает при звуковом давлении порядка 50 н/м2.

Динамический диапазон - диапазон громкостей звука, или разность уровней звукового давления самого громкого и самого тихого звуков, выраженная в децибелах.

Дифракция - отклонение от прямолинейного распространения звуковых волн.

Рефракция - изменение направления распространения звуковых волн, вызванное различиями в скорости на разных участках пути.

Интерференция - сложение волн одинаковой длины, приходящих в данную точку пространства по нескольким различным путям, вследствие чего амплитуда результирующей волны в разных точках оказывается различной, причем максимумы и минимумы этой амплитуды чередуются между собой.

Биения - интерференция двух звуковых колебаний, мало отличающихся по частоте. Амплитуда возникающих при этом колебаний периодически увеличивается или уменьшается во времени с частотой, равной разности интерферирующих колебаний.

Реверберация - остаточное «после-звучание» в закрытых помещениях. Образуется вследствие многократного отражения от поверхностей и одновременного поглощения звуковых волн. Реверберация характеризуется промежутком времени (в секундах), в течение которого сила звука уменьшается на 60 дб.

Тон - синусоидальное звуковое колебание. Высота тона определяется частотой звуковых колебаний и растет с увеличением частоты.

Основной тон - наиболее низкий тон, создаваемый источником звука.

Обертоны - все тоны, кроме основного, создаваемые источником звука. Если частоты обертонов в целое число раз больше частоты основного тона, то их называют гармоническими обертонами (гармониками).

Тембр - «окраска» звука, которая определяется количеством, частотой и интенсивностью обертонов.

Комбинационные тоны - дополнительные тоны, возникающие вследствие нелинейности амплитудной характеристики усилителей и источников звука. Комбинационные тоны появляются при воздействии на систему двух или большего числа колебаний с различными частотами. Частота комбинационных тонов равна сумме и разности частот основных тонов и их гармоник.

Интервал - отношение частот двух сравниваемых звуков. Наименьший различимый интервал между двумя соседними по частоте музыкальными звуками (каждый музыкальный звук имеет строго определенную частоту) называется полутоном, а интервал частот с отношением 2:1 - октавой (музыкальная октава состоит из 12 полутонов); интервал с отношением 10: 1 называют декадой.

Звуковые волны характеризуются скоростью распространения, звуковым давлением, интенсивностью, спектральным составом и рядом других величин.

Для образования единиц акустики, как и механики, достаточно трех основных единиц: длины L , массы M и времени T . Как правило, в акустике используется система единиц СИ. Вместе с тем на практике используются также и внесистемные единицы (децибел, фон, октава, атмосфера и др.) Перечислим здесь лишь некоторые из часто употребляемых акустических величин.

Скорость звука - фазовая скорость звуковых волн в упругой среде, обычно одинакова для всех частотных составляющих звука. Выражается в метрах в секунду (м/с ). Скорость звука в воздухе при температуре 0 С и давлении 1 атм (101325 Па) равна 331 м/с.

Звуковое давление р - переменная часть давления, возникающая при прохождении звуковой волны в среде. Распространяясь в среде, звуковая волна образует ее сгущения и разрежения, которые создают добавочные изменения давления по отношению к его средним значениям в среде.

Звуковое давление представляет собой переменную часть давления, т. е. колебания давления относительно среднего значения, частота которых соответствует частоте звуковой волны. Звуковое давление -- основная количественная характеристика звука .

Звуковое давление, как и всякое давление, измеряется в паскалях (1Па = 1 ньютон на м 2 ) и имеет размерность LMT . Иногда для характеристики звука применяется уровень звукового давления -- выраженное в дб отношение величины данного звукового давления р к пороговому значению звукового давления р о =2·10 -5 н/м 2 . При этом число децибел N=20 lg (p/p o ).

Звуковое давление в воздухе изменяется в широких пределах -- от 10 -5 н/м 2 вблизи порога слышимости до 10 3 н/м 2 при самых громких звуках, например шумах реактивных самолётов.

При значительном звуковом давлении наблюдается явление разрыва сплошности жидкости -- кавитация .

Звуковое давление следует отличать от радиационного давления звука .

Звуковое давление является наиболее важной характеристикой звука, потому что из всех акустических величин человеческое ухо воспринимает, в первую очередь, именно звуковое давление.

Акустическое радиационное давление (давление звукового излучения) - постоянное давление, испытываемое телом, находящимся в стационарном звуковом поле. Радиационное давление звука не следует смешивать со звуковым давлением , представляющим собой периодически меняющееся давление в среде, в которой распространяется звуковая волна.

Давление звука пропорционально плотности звуковой энергии и, следовательно, квадрату звукового давления. Оно мало по сравнению со звуковым давлением ; так, например, в звуковом поле в воздухе, в котором звуковое давление равно 10 2 н/м 2 , при нормальном падении звуковой волны на полностью отражающее звук препятствие Давление звука приблизительно равно 0,1 н/м 2 . Измерение радиационного давления звука производится радиометром . Зная величину давления звука, можно определить абсолютное значение интенсивности звука в данной среде.

Звуковая энергия W - энергия колебательного движения частиц упругой среды, заполняющей область звукового поля. Как и любая другая энергия, звуковая энергия выражается в джоулях (дж ) и имеет размерность LMT.

Плотность звуковой энергии w=dW/dV имеет размерность LMT и единицу измерения дж/м .

Поток звуковой энергии P=dW/dt , также как и звуковая мощность P=dW/dt - все эти энергетические величины выражаются в ваттах (Вт ) и имеет размерность LMT .

Интенсивность звука (плотность звуковой мощности), называемая также силой звука, - средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны в единицу времени: I=dР/dS, имеет размерность МТ.

Для плоской синусоидальной бегущей волны интенсивность звука

I = pv/2 = p 2 /2rc,

где р -- амплитуда звукового давления, v -- амплитуда колебательной скорости , r -- плотность среды, с -- скорость звука в ней. В сферической бегущей волне интенсивность звука обратно пропорциональна квадрату расстояния от источника. В стоячей волне I = 0 , т. е. потока звуковой энергии в среднем нет.

Интенсивность звука измеряется в системе единиц СИ в вт/м 2 . Интенсивность звука оценивается также уровнем интенсивности по шкале децибел; число децибел

N = 10 lg (I/I 0 ) ,

где I -- интенсивность данного звука, I 0 = 10 -12 вт/м 2 .

Интенсивность звука и выражается в ваттах на квадратный метр (Вт/м ).

Акустическое сопротивление - физическая величина, аналогичная сопротивлению электрической цепи. Имеет размерность LMT и выражается в паскаль-секундах на кубический метр.

Спектр звука - частотная характеристика звука, описывающая его спектральный состав по отношению к какой-либо акустической величине (обычно звуковому давлению силе звука и т.д.). Как правило, в акустической практике приходится иметь дело со сплошными спектрами, когда энергия звуковых колебаний распределяется непрерывно в определенном диапазоне частот. Вместе с тем, при решении определенных задач (градуировка, прием-передача калибровочных сигналов и т.д.) возникает необходимость в использовании линейчатых - дискретных частотных составляющих спектра.

Некоторые акустические величины, связанные с восприятием звука человеком (интенсивность звука, звуковое давление, затухание звуковых волн и др.), имеют экспоненциальный характер изменения и вследствие этого могут изменяться по величине в очень широких пределах - на несколько порядков.

В свою очередь, человеческое ухо обладает огромным диапазоном восприимчивости: оно улавливает тишайший шелест листвы и одновременно выдерживает сотрясающие удары грома. Эта способность слухового восприятия человека описана в эмпирическом психофизиологическом законе Вебера-Фехнера следующим образом: ощущение пропорционально логарифму раздражения.

Если воздействие возрастает в 10 раз, его десятичный логарифм увеличивается на единицу и ощущение возрастает также на некоторую единицу. А при росте воздействия в миллион раз его логарифм, а вместе с тем и ощущение возрастают всего лишь на шесть тех же единиц. Из этого факта следует важный вывод: психофизиологический закон обусловливает изменение амплитуды и частоты воспринимаемых звуков в столь широких пределах, что использовать линейные шкалы практически невозможно и необходимо прибегать к логарифмическому масштабу. Но этот же закон делает применение в акустике логарифмических величин и их единиц вполне естественным.

Относительный уровень акустической величины с использованием логарифмического масштаба определяется как логарифм отношения данного значения Х величины к пороговому (исходному) значению Х этой величины. принятому за начало отсчета:

уровень величины = lg Х/Х .

Например, уровень интенсивности звука - это десятичный логарифм отношения данного значения интенсивности звука I к пороговому значению I интенсивности звука.

Относительный уровень обозначают буквой L с индексом, указывающим на вид акустической величины, например Lp - уровень звукового давления. В качестве исходных уровней принимают следующие:

  • o уровень звукового давления - 20 мкПа;
  • o уровень звуковой мощности - 10 -12 Вт;
  • o уровень интенсивности звука - 0,01 Вт/м 2 .

При необходимости указать исходную величину ее значение помещают в скобках после обозначения логарифмической величины и букв re (начальные буквы слова referens). Например, для уровня звукового давления L p (re 20 мкПа)=20 дБ.

При использовании логарифмических величин для уровня величины указываются основание логарифмов (десять, корень квадратный из десяти, два и т.д.), пороговое значение величины и сам параметр (уровень звукового давления, уровень интенсивности звука и т.д.). Для количественной оценки уровней и других логарифмических величин применяются единицы бел и децибел.

Бел имеет два разных значения: одно - с основанием логарифма, равным десяти, а второе - с основанием, равным корню квадратному из десяти. Десятичное основание логарифма применяется для энергетических величин, а основание - для силовых величин.

Бел (Б) есть возрастание энергетической величины (звуковой мощности Р , энергии W , интенсивности I или другой энергетической величины) в 10 раз:

1 бел = lg (Р 2 /Р 1) при Р 2 = 10 Р 1 . (1.2.1)

Поскольку энергетические величины пропорциональны квадратам силовых величин (звукового давления, электрического тока и т.п.), бел также представляет возрастание силовой величины в = 3,162 раза.

Однако на практике наибольшее распространение получил не бел, а его дольная единица - децибел (дБ): 1дБ = 0,1 Б.

Децибел соответствует изменению энергетической величины в 10 0,1 = = 1,259 раза или силовой величины в = 1,121 раза. Существует также самостоятельное определение децибела: децибел - уровень звукового давления р , для которого выполняется соотношение 20 lg (р/р 0) = 1, где р 0 - пороговое звуковое давление, равное 20 мкПа.

Звуковая мощность - это количество звуковой энергии, излучаемой в единицу времени в ваттах.

Уровень звуковой мощности - логарифм отношения данной звуковой мощности к исходной звуковой мощности. Уровень звуковой мощности в децибелах равен десятикратному логарифму при основании, равном десяти от этого отношения:

L p = 10 lg(P/P 0),

где Р звуковая мощность, Вт, Р 0 пороговая звуковая мощность, Р 0 = 10 -12 Вт = 1 пВт, если нет другого указания.

Так как мощность акустического сигнала пропорциональна квадрату его амплитуды (мощность звука пропорциональна квадрату амплитуды звукового давления), то усилению амплитуды сигнала в один бел соответствует величина

Один децибел, соответствующий изменению амплитуды в у 10 раз, представляет сравнительно малую величину. Поэтому в децибелах

Если бы А (щ) было отношением мощностей, то перед логарифмом в правой части (1.2.2) должен был бы стоять множитель 10. Так как А (щ) представляет собой отношение не мощностей, а выходной и входной величин (перемещений, скоростей, напряжений, токов и т. п.), то увеличение этого отношения в десять раз будет соответствовать увеличению отношения мощностей в сто раз, что соответствует двум белам или двадцати децибелам. Поэтому в правой части (1.2.2) стоит множитель 20.

Уровень интенсивности звука (уровень плотности потока звукового давления) - логарифм отношения данной интенсивности звука в указанном направлении к исходной интенсивности. Уровень интенсивности в децибелах равен десятикратному логарифму при основании, равном десяти от этого отношения. Если нет другого указания, за исходную интенсивность звука принимают 1 пВт/м 2 .

Уровень звукового давления - логарифм отношения данного звукового давления к исходному звуковому давлению. Уровень звукового давления в децибелах равен двадцати логарифмам этого отношения при основании, равном десяти. Если нет другого указания, тот за исходное звуковое давление в воздухе принимают 20 мкПа и 1 мкПа в других средах и предполагается, что звуковые давления выражены через средние квадратичные значения.

Помимо объективных акустических характеристик существуют также субъективные характеристики звука, характеризующие слуховое восприятие звуков человеком. К ним относятся: громкость звука, порог слышимости, порог болевого ощущения и другие.

Громкость звука - величина, характеризующая уровень слухового ощущения звука. Громкость звука сложным образом зависит от звукового давления (интенсивности звука), от частоты и формы звуковых колебаний. При неизменной частоте и форме колебаний громкость звука растет с увеличением звукового давления. Наибольшей чувствительностью человек обладает к звукам в интервале частот 1 - 5 кГц.

Громкость звука данной частоты оценивают, сравнивая ее с громкостью чистого тона частотой 1000 Гц, вводя для этого логарифмическую величину «уровень громкости». Уровень громкости оценивают в фонах.

Фон есть уровень громкости, для которого уровень звукового давления равногромкого с ним звука стандартного чистого тона с частотой 1000 Гц равен 1 дБ. Для стандартного тона уровень громкости в фонах совпадает с уровнем звукового давления в децибелах.

Порог слышимости - звуковое давление, при котором слышны самые слабые звуки данной частоты. Наименьший порог слышимости соответствует частотам в интервале 1 - 5 Г кГц.

Порог болевого ощущения - звуковое давление, при котором нормальное слуховое ощущение переходит в болезненное раздражение органов слуха. В диапазоне частот 1 - 5 кГц порог болевого ощущения составляет около 120 дБ.

Ключевые слова : скорость звука, звуковое давление, плотность звуковой энергии, поток звуковой энергии, интенсивность звука, акустическое сопротивление, спектр звука, психофизиологический закон, уровень акустической величины, логарифмическая величина, логарифм, бел, децибел, громкость, порог слышимости, порог болевого ощущения.

Контрольные вопросы

  • 1. Укажите диапазон звуковых волн.
  • 2. Перечислите акустические величины и укажите единицу измерения.
  • 3. Что такое спектр звука?
  • 4. В чем состоит психофизиологический закон Вебера-Фехнера?
  • 5. Почему в акустике целесообразно использовать логарифмические величины?
  • 6. Что такое относительный уровень акустической величины?
  • 7. Что такое бел?
  • 8. Что такое децибел и как он связан с белом?
  • 9. Дайте определение уровня звуковой мощности, уровня интенсивности звука, уровня звукового давления.
  • 10. Что такое громкость звука?
  • 11. Что такое порог слышимости?
  • 12. Что такое порог болевого ощущения?