Аналоговые устройства приема и передачи сигналов по волс. Передача сигналов по оптоволокну: принципы

Давно известно, что медные линии ограничены по своим возможностям. Килогерцовый спектр телефонных каналов можно передать на десятки километров. Мегагерцовый спектр видеосигнала - на сотни метров. И это в оптимальных условиях, при отсутствии помех. А если рядом, скажем, электростанция или трамвайный парк, все становится намного, намного хуже. Конечно, есть способы, позволяющие немного побороться с законами природы, но кардинальное улучшение при современном уровне технологии возможно лишь при переходе на оптические линии связи, нечувствительные к помехам и шумам. Конечно, волоконные линии также имеют свои ограничения, но они существенно выше, чем у медных линий. И уж заведомо оптический кабель в любом случае совершенно нечувствителен к электромагнитным помехам. Более того, существуют полностью диэлектрические кабели, которые можно подвесить совместно с высоковольтной линией электропередачи.

Какие же ныне существуют устройства для передачи по волокну видеосигнала?


Во-первых, видео можно оцифровать и передавать по сетям Ethernet, которые тоже на расстояния более 100 м ныне существуют только в оптоволоконном виде. Недостатком этого способа являются существенные искажения сигнала, значительно затрудняющие последующий анализ изображения. Достоинством - совместимость и широкий выбор разнообразных устройств, предназначенных для построения компьютерных сетей.


Второй вариант - применить специализированные устройства для передачи видео по волокну. Сегодня они обеспечивают заметно более высокое качество передачи. Какими же бывают устройства для передачи видео по волокну?

Самые дешевые и давно известные используют прямую передачу НЧ-видеосигнала по оптическому волокну. В таком случае сигнал на приемном конце также подвержен затуханию, причем неравномерному по частотному спектру. Конечно, такое затухание начинает сказываться значительно позже - самый плохой волоконный кабель в сочетании с некогерентным светодиодным излучателем обеспечивает полосу пропускания в районе 200 МГц на километр. Это означает, что один НЧ видеосигнал можно передать на 10-20 км без существенных искажений в частотной области. Правда, есть еще один параметр, который необходимо знать, - просто затухание, которое для дешевых устройств на длине волны в районе 900 нм составляет около 3 дБ на километр. К сожалению, сам по себе запас (так называемый оптический бюджет) пары передатчик/приемник составляет всего лишь около 50 дБ. Поэтому уже на 10 км линии остаточное отношение сигнал/шум составит не более 20 дБ, что принято считать границей для хоть сколько-нибудь приемлемого сигнала. Наконец, уровень сигнала (затухание) при прямой передаче неизбежно будет колебаться в зависимости от погоды, натяжения соединителей, усталости (старения) волокна. У самых дешевых устройств, не имеющих даже АРУ в приемнике, это приводит к существенным колебаниям сигнала на выходе. Конечно, большинство мониторов имеет встроенные цепи АРУ, которые сами отработают по крайней мере +-6дБ, но многие устройства вроде цифровых рекордеров могут оказаться весьма капризными.

Понятно, что такие устройства, с передачей НЧ видеосигнала по определению одноканальные (передают по одному волокну только один канал видео). Стоит отметить, что даже в таком случае общая стоимость системы может оказаться ниже, чем с применением медного кабеля, - ведь волокна, особенно если один кабель содержит много волокон, существенно дешевле (и несоизмеримо компактнее) медного коаксиального кабеля.

Следующий тип устройств для передачи видео по волокну - с частотной модуляцией. Поскольку передача идет на несущей, бывают изделия многоканальные. Так как полоса передаваемого сигнала значительно шире, чем у видеосигнала (если в одно волокно уместить 4 канала, полоса обычно занимает 150 МГц), то на дешевом кабеле с дешевым излучателем допустимая дальность получается примерно 1 км (помните, выше я уже упоминал, что такой параметр, как широкополосность волокна, может составлять всего 200 МГц*км). Потому такие изделия даже для передачи одного канала нередко выполняют с узкополосными или лазерными передатчиками, предназначенными для одномодового волокна.

В чем достоинства ЧМ-передатчиков? Передача с частотной модуляцией значительно менее чувствительна к нестабильности линии передачи, так же как радио в УКВ-ЧМ диапазоне значительно чище от помех, нежели в АМ диапазонах. Тем не менее, сегодня эти изделия почти не выпускаются, они вытеснены цифровыми передатчиками.

Итак, третий тип передатчиков, наиболее распространенный в наше время, - цифровые. Обращаю внимание, это вовсе не то же самое, что всевозможные IP-камеры. В этих устройствах не осуществляется цифровое сжатие сигнала, оцифрованный сигнал передается непосредственно, невзирая на то, что он составляет около 150 Мбит/сек. на один канал.

Достоинством цифровых передатчиков является полное отсутствие помех до тех пор, пока сигнал доходит успешно. Правда, как только сигнал начинает сравниваться с шумами, на экране это выглядит как ужасный сумбур, полностью скрывающий изображение. Такова уж особенность цифровой передачи: пока сигнал больше, чем шум, передача практически идеальна. Но как только приемник начинает ошибаться в отдельных битах, оказывается, что ошибки практически равновероятно могут случиться и в младшем бите (его почти не видно), и в старшем (а это значит, что картинка будет белой вместо черной, или наоборот), или, что еще хуже, ошибки в служебных битах синхронизации приведут к тому, что биты случайно перемешаются и получится примерно то же самое, как если пытаться по телевизору принять радиостанцию «Маяк».

Своей популярностью цифровые системы обязаны быстрому удешевлению компонентов для компьютерных сетей. 100-мегабитные и гигабитные оптические сети распространены настолько широко, что компоненты для их производства стали значительно дешевле, чем теоретически более простые, но менее распространенные низкочастотные излучатели.

Кроме того, для цифровой передачи совершенно необязательно обеспечивать линейность передаточной характеристики излучателя, он работает в двоичном режиме: либо включен на полную мощность, либо полностью выключен, что также снижает требования к нему. Потому-то цифровые передатчики ныне составляют основную массу предлагаемых на рынке.

Каковы особенности их применения? Во-первых, как вы уже, наверное, заметили, цифровой сигнал сам по себе очень широкополосен. Один канал видео занимает 150 мегабит в секунду, т. е. примерно 70 МГц. Упоминавшиеся выше некогерентные излучатели на длине волны 800-900 нм даже один канал могут передать максимум на 1-2 км. Для цифровой передачи обычно используются лазеры, подобные тем, что стоят в CD-проигрывателях. Тем не менее даже лазеры с трудом могут обеспечить эффективную передачу по многомодовому волокну. Тем более если они работают на длине волны 850 нм. Многомодовое волокно не предназначено для передачи широкополосных сигналов. Многомодовое волокно не предназначено для работы с лазерными излучателями. И хотя на практике это возможно (сейчас даже выпускается многомодовое волокно, сертифицированное на работу с гигабитным Ethernet), дальность передачи обычно не превышает 1 км. Производители нередко указывают, что их устройства могут работать на 2, 5 или даже 10 км по многомодовому волокну. Как правило, это означает, что излучатели применены качественные - лазеры на 1300 нм. Однако качество работы системы в целом в таком случае будет ограничено не излучателем, а кабелем. Хуже того, поскольку производители волокна не предназначают его для такого применения - практически невозможно получить от них необходимые параметры волокна для расчета проектной дальности (тот самый параметр - мегагерцы на километр, который существенно зависит от состава излучения и определяется производителем для основных излучателей, для которых волокно предназначено). Вам может повезти, и все будет работать. А может оказаться, что даже мощный лазерный излучатель будет работать всего на 2-3 км, и то сигнал будет нарушаться при изменении погодных условий (от температуры иногда незначительно, на десятые доли децибела, повышаются потери в соединителях. Это обычно несущественно, но если вы работаете на пределе возможностей волокна - и это может оказаться последней соломинкой).

Итак, если для вас существенны дальность передачи, следует использовать одномодовые передатчики. Тем более что по цене они несущественно отличаются от многомодовых (порой они вообще не отличаются по конструкции, хотя у некоторых производителей в многомодовых применяются чуть более дешевые излучатели, забракованные при прохождении контроля на нормативы для одномодового применения). Кстати, одномодовый волоконный кабель дешевле, чем многомодовый. Это и понятно, ведь волокно диаметром 9 микрон просто-напросто содержит в себе намного меньше чистого стекла, чем волокно диаметром 50 микрон.

Почему же вообще до сих пор еще применяется многомодовое волокно? Дело в том, что его чуть легче соединять, особенно в случае ремонта. Существуют быстромонтируемые механические соединители, позволяющие обходиться без сварки, без клея, без полировки. Эти соединители относительно дороги (долларов 10), потому их не применяют при массовом монтаже, но в случае ремонта такой соединитель более чем уместен. Напомню, что все проблемы с дальностью у цифровых устройств обусловлены именно полосой передаваемых частот, а вовсе не затуханием сигнала по амплитуде, а потому несколько большие потери на механическом соединении по сравнению со сваркой несущественны.

Для одномодового волокна такие соединители также существуют, но они еще дороже, требуют значительно более аккуратного обращения и вносят еще большее затухание. Как же выбрать? Если требуется передать на километр-два, можно использовать многомодовые устройства. Если вы ожидаете частые повреждения и необходимо осуществлять ремонт не очень квалифицированным персоналом, лучше использовать многомодовое волокно, соответственно, спроектировав систему или проверив образцы волокна перед закупкой на заводе. Во всех остальных случаях одномодовые устройства обеспечат несоизмеримо более качественную работу. Для сравнения скажу, что если для многомодового волокна широкополосность составляет 200-500 МГц*км в диапазоне 850 нм и в лучшем случае 2000 МГц*км в диапазоне 1300 нм, то для одномодового волокна широкополосность, как правило, принимает значения в районе 20 000 МГц*км, т. е. типичный 4-канальный передатчик уверенно работает примерно на 50 км.

На что еще следует обратить внимание при выборе цифрового передатчика видео по волокну. Разрядность. Ее часто указывают в рекламе. Если не указана, значит, 8 бит. Если 10 или 12 бит, производитель не преминет это подчеркнуть. Насколько важна разрядность? Для цветного сигнала иногда может оказаться важна. Однако не менее (а может быть, даже более) важна и частота дискретизации, которую вы вряд ли найдете в описаниях устройств. И нередко повышение разрядности происходит именно за счет понижения частоты дискретизации. Впрочем, повторюсь, это важно лишь для цветного сигнала. Да и проверить качество передачи очень легко. Поскольку цифровой сигнал либо передается, либо нет, качество можно проверить даже на метровом куске волокна, прямо на столе. Воспользуйтесь стандартной телевизионной цветной таблицей или просто полосатой таблицей разных цветов, хорошей видеокамерой и монитором и посмотрите, насколько хуже изображение с предлагаемым передатчиком по сравнению с прямым соединением камеры с монитором. На реальном объекте качество будет такое же, как и на коротком куске волокна.

Обратите внимание на температурный диапазон работы передатчиков. Именно передатчиков, поскольку они обычно устанавливаются недалеко от видеокамер, на улице, где-то равномерно вдоль многокилометрового периметра объекта. Смотрите, чтобы вам не пришлось строить для передатчиков теплую избушку. Кстати, передатчики Ethernet по волокну, как правило, предназначены именно для теплых избушек, а редкие версии с индустриальным диапазоном температур значительно дороже обычных. Какие еще бывают особенности?

Не столь существенные для работы, но порой значительно облегчающие жизнь. Например, устройства могут монтироваться в 19” стойку, что бывает удобно в переполненном центральном пункте.

Устройства могут питаться от выносного блока питания (это популярно у импортных устройств) или непосредственно от 220 В. Смотрите, что вам удобнее. Выносные блоки питания нередко таковы, что их можно воткнуть только непосредственно в розетки, а это лишние разъемные соединения, что не повышает надежность системы.

Бывают универсальные устройства, которые легко монтируются как на стенку, так и в стойку, которые работают как по одномодовому, так и по многомодовому волокну, могут работать как от 220 вольт, так и от внешнего низковольтного питания. Но такая универсальность важна разве что дистрибуторам, чтобы не хранить на складе большой ассортимент устройств. В каждом конкретном проекте более или менее известно, что конкретно нужно, и уж менять кабель в процессе эксплуатации точно никто не будет.

В сетях передачи данных оптоволоконный кабель дает целый ряд пре­имуществ: не испытывает влияния электромагнитных помех, передает сигнал с очень высокой скоростью на дальние расстояния без повторителей и др. Для того чтобы совместить оптоволоконный кабель с существующим сетевым оборудованием, соединенным медными проводами, требуются конвертеры, например такие, как оптоволоконные конвертеры фирмы ADFweb.

ООО «Крона», г. Санкт-Петербург

Немного о терминах

Конвертер – это преобразователь. Не очень понятно, отчего английское слово converter потеснило свой русский эквивалент. Однако уже довольно давно в технике такое название получают разнообразные устройства, между которыми единственное сходство – функция преобразования. Почему при этом конвертеры не называть преобразователями, отчего прижилось иностранное слово, одному русскому языку известно.

Преимущества оптоволоконного кабеля

В сетях передачи данных, построенных на базе технологий Ether­net, сигнал может передаваться как по медным, так и по оптоволоконным проводам, только в первом случае это осуществляется с помощью электричества, а во втором – с помощью света. Свет не только позволяет передавать информацию на большее расстояние с большей скоростью, но и придает оптическому волокну абсолютный иммунитет к любым видам электромагнитных помех.

Традиционные медные провода чувствительны к внешним электромагнитным помехам, искажающим сигнал. А ведь источников, способных генерировать эти помехи, множество! Поэтому, чтобы электроника не зависала и не давала сбоев, шину передачи данных приходится тщательно отделять от шины питания.

Кроме того, сигнал, проходящий по медным проводам, достаточно быстро затухает, поэтому необходимы повторители, или, если опять употребить термин-кальку, репитеры, – устройства, обновляющие его. Ставить повторители приходится довольно близко друг от друга – примерно через каждую сотню метров. Если же учесть расстояния, которые способна покрывать промышленная сеть, становится ясно, что таких устройств требуется множество.

Оптоволокно обеспечивает быстрое и простое надежное соединение, при этом позволяя создать абсолютную электрическую и гальваническую изоляцию. Поэтому при использовании оптического кабеля не приходится отделять шину передачи данных от шины питания, а кроме того, нет опасности, что повредится вся сеть устройств, если из строя выйдет один узел (например, при попадании молнии). Все компоненты сети при подключении через оптический кабель полностью изолированы друг от друга, поэтому при электрическом повреждении одного из узлов сети это повреждение не распространяется на остальные узлы. Ну и наконец, гораздо проще диагностировать состояние сети и мгновенно локализовать ее неисправный компонент.

Оптоволоконный кабель может использоваться для сетей разного типа, он позволяет соединять узлы на очень большом расстоянии. А кроме того, у оптоволокна гораздо больше «пропускная способность», чем у медной жилы, иными словами, по оптоволоконному кабелю можно передать гораздо больший объем информации за единицу времени, что играет существенную роль в масштабах промышленного предприятия.

Итак, если суммировать сказанное, то к преимуществам соединения с помощью оптического кабеля можно отнести:

Невосприимчивость к электромагнитным и электростатическим помехам;

Высокую скорость приема/передачи информации;

Соединение абонентов на большом расстоянии;

Безопасность и функциональность.

Сказать, что оптоволоконный кабель всегда и во всем выигрывает у медного, нельзя. У медного кабеля есть свои преимущества. Например, он дешевле и не такой хрупкий, как оптоволокно. Тем не менее существует целый ряд областей промышленности, где применение оптоволоконного кабеля полностью себя оправдывает:

Нефтегазовый комплекс;

Электростанции, в том числе атомные;

Телекоммуникации;

Удаленные системы управления и мониторинга;

Медицина.

Всё это привело к тому, что сегодня многие предприятия переходят на оптоволоконную инфраструктуру. При этом очень часто требуется устройство, позволяющее совместить оптоволоконный кабель с существующим сетевым оборудованием, приспособленным для «медной» инфраструктуры.

Для того чтобы перевести уже существующие сети на оптоволокно, разработаны конвертеры, позволяющие подключать устройства с RS-, Ethernet- и другими выходами к оптоволоконным кабелям. Конвертеры дают возможность пробрасывать существующие сети/шины (LAN/Ethernet, CAN, последовательные порты RS‑232, RS‑485) через оптоволоконные кабели, гарантируя их надежность и функциональность. Причем эти сети можно пробрасывать через одно и то же соединение одновременно. Допускается использовать топологию сети с любыми комбинациями оптоволоконных кабелей, как одномодовых, так и мультимодовых.

Оптоволоконные конвертеры фирмы ADFweb

Компания КРОНА представляет оптоволоконные конвертеры ADFweb двух типов: «экономичные» и «продвинутые».

Преобразователи экономичной серии, HD67072, HD67074 и HD67075, позволяют соединять устройства с RS- или USB-портами через мультимодовый оптоволоконный кабель по четырем разным топологиям сети:

Point To Point (прямое соединение, точка – точка): одно устройство с помощью оптоволоконного кабеля подключается к другому напрямую;

Single Loop (кольцо): несколько устройств соединяются оптоволоконным кабелем последовательно с закольцовыванием, то есть подключением первого к последнему;

Double Loop (кольцо с резервированием): несколько устройств соединяются последовательно с помощью двух пар оптоволоконных кабелей. При этом соединения закольцовываются в двойное кольцо. Такое соединение является сверхнадежным;

Multi-Drop (в линию): несколько устройств последовательно соединяются двумя оптоволоконными кабелями. В этом случае отсутствует необходимость закольцовывать соединение.


Рис. Конвертер HD67702 фирмы ADFweb

Конвертеры продвинутой серии, HD67701 и HD67702, допускают соединение как через мультимодовый, так и через одномодовый кабель. Они позволяют соединять устройства, имеющие Ethernet-, CAN-, RS‑232‑или RS‑485‑порты, по тем же четырем топологиям сети, что были перечислены выше.

Продвинутая серия, разумеется, обойдется дороже отчасти из-за применения одномодового кабеля. Многомодовое волокно имеет более широкий диаметр сердечника, из-за чего световая волна распространяется в нем с меньшей скоростью и быстрее затухает. В одномодовом волокне диаметр сердечника настолько мал (8 мкм), что в нем распространяется только один луч, генерируемый лазером, по единственному пути – моду. Благодаря этому скорость сигнала чрезвычайно высока (от 10 Гб), а скорость его затухания – всего 0,5 дБ/км. Такой кабель дороже, потому что создан по более сложным технологиям, однако на крупных предприятиях эти затраты себя оправдывают.

Дополнительно устройства продвинутых серий обладают следующими возможностями:

Имеют распределенный ввод/вывод;

Создают карту привязки выходов к входам;

Обеспечивают чтение статуса входов/выходов через стандартные Modbus-команды.

Конвертеры продвинутой серии предоставляют доступ к диагностическим данным через стандартные Modbus-регистры, что позволяет легко интегрировать их с существующими системами управления (например, подключить к SCADA-системе).

Важным достоинством конвертеров серий HD67701 и HD67702 является то, что с их помощью по одному оптическому волоконному кабелю в одно и то же время можно «пробросить» до 6 уже существующих сетей, включая 4 последовательные сети (например, Modbus RTU), одну сеть CAN (например, CANopen) и одну сеть Ethernet (например, PROFINET или Modbus TCP).

Имеется возможность объединить данные конвертеры с модулями ввода/вывода, которые содержат по 4 дискретных входа и выхода. Благодаря этим модулям можно пробрасывать «сухие» контакты через оптоволоконный кабель на большое расстояние.

Инновационной является возможность создания карты привязки входов к выходам: один вход подключается к нескольким выходам. Таким образом, с помощью двух блоков входных и выходных сигналов, между которыми проведен оптоволоконный кабель, «нажав кнопку», включаешь несколько насосов, которые находятся от этой кнопки на расстоянии 50 км.

Введение

В настоящее время телекоммуникационная индустрия претерпевает беспрецедентные изменения, связанные с переходом от голосоориентированных систем к системам передачи данных, что является следствием бурного развития Internet технологий и разнообразных сетевых приложений. Поэтому одним из основных требований, предъявляемых к транспортным сетям для передачи данных, является возможность быстрого увеличения их пропускной способности в соответствии с ростом объемов трафика.

Цифровая связь по оптическим кабелям, приобретающая всё большую актуальность, является одним из главных направлений научно-технического прогресса.

Преимущества цифровых потоков в их относительно лёгкой обрабатываемости с помощью ЭВМ, возможности повышения отношения сигнал/шум и увеличения плотности потока информации.

Преимущества оптических систем передачи перед системами передачи работающими по металлическому кабелю заключается в:

Возможности получения световодов с малым затуханием и дисперсией, а значит увеличение дальности связи;

Широкой полосе пропускания, т.е. большой информационной ёмкости;

Оптический кабель не обладает электропроводностью и индуктивностью, то есть кабели не подвергаются электромагнитным воздействием;

Пренебрежимо малых перекрестных помех;

Низкой стоимостью материла оптического кабеля, его малый диаметр и масса;

Высокой скрытности связи;

Возможности усовершенствования системы при полном сохранении совместимости с другими системами передачи.

Линейные тракты волоконно-оптических систем передачи строятся как двухволоконные однополосные одно кабельные, одноволоконные одно полосные однокабельные, одноволоконные многополосные одно кабельные (со спектральным уплотнением).

Учитывая, что доля затрат на кабельное оборудование составляет значительную часть стоимости связи, а цены на оптический кабель в настоящее время остаются достаточно высокими, возникает задача повышения эффективности использования пропускной способности оптического волокна за счёт одновременной передачи по нему большего объёма информации.

Цель работы - рассмотрение различных способов увеличения пропускной способности оптического волокна.

Принципы передачи сигналов по оптическому волокну и основные параметры оптических волокон

Принципы передачи сигналов по оптическому волокну

В основе применения оптических волоконных сетей лежит принцип распространения световых волн по оптическим световодам на большие расстояния. При этом электрические сигналы, несущие информацию, преобразуются в световые импульсы, которые с минимальными искажениями передаются по волоконно-оптическим линиям связи (ВОЛС). Большое распространение подобные системы получили благодаря целому ряду достоинств, которые есть у ВОЛС по сравнению с системами передачи, использующие медные кабели или радиолинии в качестве среды передачи. К числу преимуществ ВОЛС следует отнести широкую полосу пропускания, обусловленную высокой несущей частотой - до 10 14 Гц. Такая полоса дает возможность передавать потоки информации со скоростью несколько терабит в секунду. Важным преимуществом ВОЛС являются также такие факторы, как малое затухание сигналов, позволяющее, при использовании современных технологий, строить участки оптических систем в сто и более километров без ретрансляторов, высокая помехозащищенность, связанная с малой восприимчивостью оптического волокна к электромагнитным помехам, и многое другое.

Оптические волокна - один из основных компонентов ВОЛС. Они представляют собой комбинацию материалов, имеющих различные оптические и механические свойства.

Внешняя часть волокна изготавливается обычно из пластмасс или эпоксидных композиций, сочетающих высокую механическую прочность и большой коэффициент преломления света. Этот слой обеспечивает механическую защиту световода и его устойчивость к воздействию внешних источников оптического излучения.

Основная часть волокна состоит из сердцевины и оболочки. Материалом сердцевине служит сверхчистое кварцевое стекло, которое и является основной средой передачи оптических сигналов. Удержание светового импульса происходит вследствие того, что коэффициент преломления материала сердцевины больше, чем у оболочки. Таким образом, при оптимально подобранном соотношении коэффициентов преломления материалов происходит полное отражение светового луча внутрь сердцевины.

Для передачи свет вводится под небольшим углом в торец оптического волокна. Максимальный угол проникновения светового импульса в сердечник волокна б 0 называется угловой апертурой оптического волокна. Синус угловой апертуры называется числовой апертурой NA и рассчитывается по формуле:

Из приведенной формулы следует, что числовая апертура световода NA зависит только от показателей преломления сердцевины и оболочки - n 1 и n 2 . При этом всегда выполняется условие: n 1 >n 2 (рисунок 1).


Рисунок 1 - Распространение света в оптическом волокне. Числовая апертура световода.

Если угол падения света б больше, чем б 0 , то луч света полностью преломляется и не попадает в сердечник оптического волокна (рис.2а). Если угол б меньше, чем б 0 , то происходит отражение от границы материалов сердечника о оболочки, и световой луч распространяется внутри сердечника (рис.2б).

Рисунок 2 - Условия распространения света в оптическом волокне

Скорость распространения света в оптическом волокне зависит от коэффициента преломления сердечника волокна и определяется как:

где С - скорость света в вакууме, n - коэффициент преломления сердечника.

Типичные коэффициенты преломления материала сердечника лежат в пределах 1,45 - 1,55.

Для того, чтобы передавать свет по оптическим волноводам, необходим источник строго когерентного света. Для увеличения дальности передачи ширина спектра передатчика должна быть как можно меньше. Для этой цели особенно подходят лазеры, которые, благодаря индуцированному излучению света, позволяют поддерживать постоянную разность фаз при одинаковой длине волн. В связи с тем, что диаметр сердцевины волокна сравним с длиной волны оптического излучения, в световоде возникает явление интерференции. Это может быть док5азано тем, что свет распространяется в стекле сердцевины только под определенными углами, а именно в направлениях, в которых введенные световые волны при их наложении усиливаются. Возникает так называемая конструктивная интерференция. Разрешенные световые волны, которые могут распространяться в оптическом волокне, называются модами (или собственными волнами). В соответствии с типами распространения световых лучей, оптические волокна делятся на многомодовые, то есть использующие ряд световых волн, и одномодовые, в которых происходит распространение только одного светового луча. Для описания процессов распространения света в оптических волокнах используются несколько основных параметров.

Способы передачи сигналов различного типа, данных и команд управления по оптоволоконным линиям связи начали активно внедряться в последнее десятилетие прошедшего века. Однако достаточно долго они не могли составить серьезной конкуренции (по крайней мере, в сегменте ТСБ) коаксиальному кабелю и витой паре. Несмотря на такие недостатки, как высокие сопротивление и емкость, что существенно ограничивает дальность передачи сигнала, коаксиальный кабель и витая пара превалировали в системах безопасности. Сегодня ситуация начинает меняться, причем рискну утверждать, что перемены эти кардинальные. Нет, в небольших системах, где видео и сигналы управления требуется передавать на небольшие расстояния, коаксиальный кабель и витая пара по-прежнему незаменимы. В крупных и особенно распределенных системах у оптоволокна альтернативы практически нет.
Дело в том, что оптоволоконное оборудование сегодня стало гораздо доступнее по цене и тенденция к его дальнейшему удешевлению достаточно устойчива.
Так что волоконная оптика в настоящее время дает возможность предложить заказчику систем безопасности не только надежное, но и экономически выгодное решение. Использование светового луча для передачи сигнала, широкая полоса пропускания позволяют передавать сигнал высокого качества на значительные расстояния без использования усилителей и повторителей.
Основными преимуществами использования волоконной оптики, как известно, являются:
– более широкая полоса пропускания (до нескольких гигагерц), чем у медного кабеля (до 20 МГц);
– невосприимчивость к электрическим помехам, отсутствие «земляных петель»;
– низкие потери при передаче сигнала, ослабление сигнала составляет около 0,2–2,5 дБ/км (для коаксиального кабеля RG59 – 30 дБ/км для сигнала 10 МГц);
– не вызывает помех в соседних «медных» или других оптоволоконных кабелях;
– большая дальность передачи;
повышенная безопасность передачи данных;
хорошее качество передаваемого сигнала;
– оптоволоконный кабель миниатюрен и легок.

Принцип работы оптоволоконной линии
Волоконная оптика -–технология, в которой в качестве носителя информации используется свет, и не важно, о каком типе информации идет речь: аналоговом или цифровом. Обычно используется инфракрасный свет, а средой передачи служит стекловолокно.
Оптоволоконное оборудование может использоваться для передачи аналогового или цифрового сигнала различных типов.
В простейшем варианте исполнения оптоволоконная линия связи состоит из трех компонентов:
– волоконно-оптического передатчика для преобразования входного электрического сигнала от источника (например, видеокамеры) в модулированный световой сигнал;
– оптоволоконной линии, по которой световой сигнал передается на приемник;
– волоконно-оптического приемника, преобразующего сигнал в электрический, практически идентичный сигналу источника.
Источником распространяемого по оптическим кабелям света является светодиод (LED) (или полупроводниковый лазер – LD). На другом конце кабеля принимающий детектор преобразует световые сигналы в электрические. Волоконная оптика опирается на особый эффект – преломление при максимальном угле падения, когда имеет место полное отражение. Это явление происходит в том случае, когда луч света выходит из плотной среды и попадает в менее плотную среду под определенным углом. Внутренняя жила (нить) оптоволоконного кабеля имеет более высокий показатель преломления, чем оболочка. Поэтому луч света, проходя по внутренней жиле, не может выйти за ее пределы из-за эффекта полного отражения (рис. 1).Таким образом, транспортируемый сигнал идет внутри замкнутой среды, проделывая путь от источника сигнала до его приемника.
Остальные элементы кабеля лишь предохраняют хрупкое волокно от повреждений внешней средой различной агрессивности.

МИР ЦИФРЫ И СТЕКЛА

ВВЕДЕНИЕ

У оптоволоконной связи много хорошо известных преимуществ над витой парой и коаксиальными кабелями, например, невосприимчивость к электрическим помехам и непревзойденно широкая полоса пропускания

За последнюю четверть века оптоволоконная связь стала широко распространенным методом передачи видео- и аудиосигнала, других аналоговых сигналов и цифровых данных. У оптоволоконной связи много хорошо известных преимуществ над витой парой и коаксиальными кабелями, например, невосприимчивость к электрическим помехам и непревзойденно широкая полоса пропускания. По этим и многим другим причинам волоконно-оптические системы передачи информации все глубже проникают в самые разные области информационных технологий.

Цифровые системы обеспечивают очень высокую производительность, гибкость и надежность, и стоят при этом не больше, чем аналоговые решения, на смену которым они приходят

Однако, несмотря на эти преимущества, в оптоволоконных системах до недавнего времени использовались те же самые аналоговые технологии передачи сигнала, что и в их медных предшественниках. Сейчас, когда появилось новое поколение аппаратуры, основанное исключительно на цифровых методах обработки сигналов, оптоволоконная связь вновь выводит телекоммуникации на совершенно новый уровень. Цифровые системы обеспечивают очень высокую производительность, гибкость и надежность, и стоят при этом не больше, чем аналоговые решения, на смену которым они приходят.

В этом пособии рассматривается техника цифровой передачи сигнала по оптоволоконным кабелям и ее экономические и технологические преимущества.

АНАЛОГОВАЯ ПЕРЕДАЧА ПО ОПТОВОЛОКНУ

Чтобы в должной мере оценить преимущества цифровых технологий, давайте вначале рассмотрим традиционные методы передачи аналоговых сигналов по оптоволокну. Для передачи аналоговых сигналов используют амплитудную (АМ) и частотную (ЧМ) модуляцию. В обоих случаях на вход оптического передатчика поступает низкочастотный аналоговый аудио- и видеосигнал или данные, которые преобразуются в оптический сигнал. Делается это по-разному.

В системах с амплитудной модуляцией оптический сигнал – это световой поток с интенсивностью, меняющейся в соответствии с изменениями входного электрического сигнала. В качестве источника света используются либо светодиоды, либо лазеры. К сожалению, и те и другие нелинейны, то есть в полном диапазоне яркостей от отсутствия излучения до максимального значения не соблюдается пропорциональность между входным сигналом и интенсивностью света. Тем не менее, именно такой способ управления используется в системах с амплитудной модуляцией. В результате возникают различные искажения передаваемого сигнала:

  • снижение отношения сигнал/шум по мере роста длины кабеля;
  • нелинейное дифференциальное усиление и фазовые ошибки при передаче видеосигнала;
  • ограничение динамического диапазона аудиосигнала.

Для улучшения качества работы оптоволоконных систем передачи сигнала было предложено использовать частотную модуляцию, при которой источник света всегда либо выключен полностью, либо включен на полную мощность, а частота следования импульсов изменяется в соответствии с амплитудой входного сигнала. Для тех, кто знаком с частотной модуляцией сигналов в радиотехнике, применение здесь этого термина может показаться необоснованным, поскольку в контексте оптоволоконных систем это воспринимается как метод управления частотой самого светового излучения. Это не так, и в самом деле более правильно было бы использовать термин «фазоимпульсная модуляция» (ФИМ), но в области оптоволоконной техники устоялась именно такая терминология. Следует всегда помнить, что слово «частотная» в названии метода модуляции означает частоту следования импульсов, а не частоту несущих их световых волн.

При амплитудной модуляции уровень входного сигнала представляется интенсивностью светового луча

При частотной модуляции уровень входного сигнала представляется частотой следования световых импульсов
Рис. 1. Сравнение амплитудной и частотной модуляции

Хотя частотная модуляция устраняет многие проблемы управления яркостью излучателя, свойственные системам с АМ, у нее есть и свои трудности. Одна из них – известные в ЧМ-системах перекрестные помехи. Они наблюдаются, в частности, при передаче нескольких сигналов с частотной модуляцией по одному оптоволокну, например, при использовании мультиплексора. Перекрестные помехи возникают в передатчике или приемнике как результат нестабильности настройки важных схем фильтрации сигнала, предназначенных для разделения несущих частот. Если фильтры настроены некачественно, то частотно-модулированные несущие взаимодействуют друг с другом и искажаются. Инженеры, специализирующиеся на оптоволоконных системах, могут создать ЧМ-системы, в которых вероятность возникновения перекрестных помех сведена к минимуму, но любое усовершенствование конструкции влечет за собой возрастание стоимости приборов.

Еще один тип искажений называется интермодуляцией. Как и перекрестные помехи, интермодуляция возникает в системах, предназначенных для передачи сразу нескольких сигналов по одному оптоволокну. Интермодуляционные искажения возникают в передатчике чаще всего как результат нелинейности в цепях, общих для различных ЧМ-несущих. Как следствие, до объединения нескольких несущих в один оптический сигнал они действуют друг на друга, снижая точность передачи исходного сигнала.

ЦИФРОВЫЕ СИСТЕМЫ

Как и в аналоговых системах, на передатчики цифровых систем поступает низкочастотный аналоговый аудио- и видеосигнал или цифровые данные, которые преобразуются в оптический сигнал. Приемник получает оптический сигнал и выдает электрический сигнал исходного формата. Различие состоит в том, как сигналы обрабатываются и передаются от передатчика к приемнику.


Рис. 2. Цифровая система передачи аналогового сигнала

В чисто цифровых системах входной низкочастотный сигнал сразу поступает на аналого-цифровой преобразователь, который входит в состав передатчика. Там сигнал преобразуется в последовательность логических уровней – нулей и единиц, называемую цифровым потоком. Если передатчик многоканальный, то есть рассчитан на работу с несколькими сигналами, то несколько цифровых потоков объединяются в один, и он управляет включением и выключением одного излучателя, которое происходит с очень высокой частотой.

На приемном конце происходит обратное преобразование сигнала. Из комбинированного цифрового потока выделяются индивидуальные потоки, соответствующие отдельным передаваемым сигналам. Они поступают на цифро-аналоговые преобразователи, после чего выдаются на выходы в исходном формате (рис. 2).

Чисто цифровая передача сигнала имеет массу преимуществ над традиционными АМ- и ЧМ-системами – от универсальности и более качественного сигнала до меньшей стоимости монтажа. Давайте рассмотрим некоторые из преимуществ более подробно и попутно обсудим выгодные как для установщика систем, так и для их пользователя экономические показатели.

ТОЧНОСТЬ ПЕРЕДАЧИ СИГНАЛА

В аналоговых системах с амплитудной модуляцией сигнал теряет качество пропорционально пути, пройденному по оптоволокну. Этот факт в сочетании с тем, что АМ-системы работают только с многомодовыми световодами, ограничивает применение таких систем сравнительно небольшими расстояниями передачи. ЧМ-системы работают несколько лучше: в них качество сигнала хотя и снижается, но в не очень длинных линиях остается примерно постоянным, резко снижаясь лишь при достижении некоторой предельной длины. Только в полностью цифровых системах гарантируется сохранение качества сигнала при передаче по оптоволоконной линии связи независимо от расстояния между передатчиком и приемником и количества передаваемых каналов (конечно, в пределах возможностей системы).

В аналоговых системах с амплитудной модуляцией сигнал теряет качество пропорционально пути, пройденному по оптоволокну. Этот факт в сочетании с тем, что АМ-системы работают только с многомодовыми световодами, ограничивает применение таких систем сравнительно небольшими расстояниями передачи

Точность воспроизведения передаваемого сигнала представляет значительную проблему при разработке систем для организации нескольких каналов передачи по одному оптоволокну (мультиплексоров). Например, в аналоговой системе, рассчитанной на передачу четырех каналов видео- или аудиосигнала, для того, чтобы уложиться в полосу пропускания системы, приходится ограничивать полосу, отводимую отдельным каналам. В цифровых системах не приходится идти на такой компромисс: по одному световоду можно передавать один, четыре и даже десять сигналов без снижения качества.

БОЛЕЕ ВЫСОКОЕ КАЧЕСТВО ПЕРЕДАЧИ СИГНАЛОВ


Рис. 3

Передача аналоговых сигналов в цифровой форме обеспечивает более высокое качество, чем чисто аналоговая. Искажение сигнала при таком способе передачи может происходить только при аналого-цифровом и обратном цифро-аналоговом преобразовании. Хотя никакое преобразование не идеально, современные технологии настолько совершенны, что даже недорогие АЦП и ЦАП обеспечивают гораздо более высокое качество видео- и аудиосигнала, чем можно достичь в аналоговых АМ- и ЧМ-системах. Это легко видно из сравнения отношений сигнал-шум и нелинейных искажений (дифференциальной фазы и дифференциального усиления) цифровых и аналоговых систем, предназначенных для передачи сигналов одного формата по оптоволокну одинакового типа на одной и той же длине волны.

Цифровые технологии предоставляют инженерам невиданную ранее гибкость при создании оптоволоконных систем. Теперь для различных рынков, задач и бюджетов легко подобрать нужный уровень производительности. Например, меняя разрядность аналого-цифрового преобразователя, можно влиять на необходимую для передачи сигнала полосу пропускания системы, и, как следствие, общую производительность и стоимость. При этом другие свойства цифровой системы – отсутствие искажений и независимость качества работы от длины линии – сохраняются вплоть до максимального расстояния передачи. При разработке аналоговых систем инженеры всегда находятся в клещах между стоимостью системы и ее техническими характеристиками, пытаясь сбалансировать их без ущерба для критически важных параметров передаваемых сигналов. В цифровых системах масштабирование систем и управление их производительностью и стоимостью – гораздо менее сложная задача.

НЕОГРАНИЧЕННОЕ РАССТОЯНИЕ ПЕРЕДАЧИ

Другое преимущество цифровых систем над аналоговыми предшественниками – их способность восстанавливать сигнал, не внося в него дополнительных искажений. Такое восстановление выполняется в специальном приборе, называемом репитером или линейным усилителем.

Преимущество, предоставляемое цифровыми системами, очевидно. В них сигнал может быть передан на расстояния, значительно превосходящие возможности АМ- и ЧМ- систем, при этом разработчик может быть уверен, что принятый сигнал точно совпадает с переданным и соответствует требованиям технического задания.

По мере прохождения света по оптоволокну его интенсивность постепенно снижается и, в конце концов, становится недостаточной для детектирования. Если же немного не доходя до того места, где свет становится слишком слабым, установить линейный усилитель, то он усилит сигнал до его исходной мощности, и его можно будет передавать дальше на такое же расстояние. Важно отметить, что в линейном усилителе восстанавливается цифровой поток, что не оказывает никакого влияния на качество закодированного в нем аналогового видео- или аудиосигнала независимо от того, сколько раз выполнялось восстановление в линейных усилителях на пути следования сигнала по длинной оптоволоконной линии.

Преимущество, предоставляемое цифровыми системами, очевидно. В них сигнал может быть передан на расстояния, значительно превосходящие возможности АМ- и ЧМ-систем, при этом разработчик может быть уверен, что принятый сигнал точно совпадает с переданным и соответствует требованиям технического задания.

МЕНЬШАЯ СТОИМОСТЬ

Оценивая те многочисленные преимущества, которыми обладают цифровые оптоволоконные системы, можно предположить, что они должны стоить гораздо дороже традиционных аналоговых систем. Однако это не так, и пользователи цифровых систем, напротив, экономят свои деньги.

На конкурентном рынке всегда найдется производитель, предлагающий цифровое качество по цене аналоговой системы

Стоимость цифровых компонентов существенно снизилась за последние годы, и изготовители оборудования смогли разработать и предложить к продаже изделия, которые стоят так же или даже дешевле, как и аналоговые приборы предыдущего поколения. Конечно, некоторые фирмы хотят убедить общественность в том, что превосходное качество цифровых систем можно получить только за дополнительную плату, но на деле они просто решили не делить сэкономленное со своими клиентами. Но на конкурентном рынке всегда найдется производитель, предлагающий цифровое качество по цене аналоговой системы.

Цифровые системы позволяют по одному кабелю передавать больший объем информации, тем самым снижая потребность в нем

На стоимость установки и эксплуатации оптоволоконной системы влияют и другие факторы. Наиболее очевидный из них - затраты на кабель. Цифровые системы позволяют по одному кабелю передавать больший объем информации, тем самым снижая потребность в нем. Преимущество особенно хорошо заметно там, где надо одновременно передавать сигналы различных типов, например, видео и звук или звук и данные. Без особых проблем инженеры смогут сконструировать цифровую систему с приемлемой стоимостью, в которой по одному оптоволокну будут передаваться сигналы различных типов, например, два канала видео и четыре канала звука. При использовании аналоговых технологий, скорее всего, пришлось бы делать две отдельные системы, или, как минимум, использовать два раздельных кабеля для передачи аудио- и видеосигналов.

Из-за меньшего количества компонентов, которые могут со временем выйти из строя, цифровые системы гораздо более стабильны и надежны

Даже в случаях, когда по одному оптоволокну надо передавать несколько однотипных сигналов, цифровые системы предпочтительнее, поскольку работают более надежно и обеспечивают более высокое качество сигнала. Например, в цифровом видеомультиплексоре можно передать десять каналов с одинаково высоким качеством, а в аналоговой системе такое вообще невозможно.

Следует учитывать и неизбежные за годы эксплуатации оптоволоконных систем расходы на техническое обслуживание и ремонт. И здесь преимущество за цифровыми системами. Во-первых, для них не требуется первоначальная настройка после монтажа – передатчик и приемник просто соединяются оптоволоконным кабелем, и система готова к работе. Аналоговым системам, как правило, требуется подстройка под параметры конкретной линии передачи, учитывающая ее длину и интенсивность сигнала. Дополнительное время на регулировку влечет за собой дополнительные затраты.

Передатчики и приемники для цифровых систем стоят дешевле, расход кабеля меньше, эксплуатационные расходы ниже

Из-за меньшего количества компонентов, которые могут со временем выйти из строя, цифровые системы гораздо более стабильны и надежны. Для них не потребуется повторная на- стройка, а поиск неисправности займет гораздо меньше времени, поскольку в них нет перекрестных искажений, дрейфа параметров и других недостатков, свойственных традиционным аналоговым системам.

Подведем итог. Передатчики и приемники для цифровых систем стоят дешевле, расход кабеля меньше, эксплуатационные расходы ниже. Цифровые оптоволоконные системы обеспечивают очевидное экономическое преимущество на всех уровнях.

ВЫВОДЫ

Как оптоволоконная технология имеет много преимуществ по сравнению с традиционными медными проводами и коаксиальными кабелями, так и цифровая передача информации продвигает оптоволоконную технологию на несколько ступеней вверх, давая пользователям целый набор новых полезных качеств. Цифровые системы обладают уникальными характеристиками: точностью передачи сигнала на всей длине линии связи, минимальными вносимыми искажениями (в том числе отсутствием перекрестных искажений и интермодуляции), возможностью многократного восстановления цифрового потока при его передаче по длинной линии без ущерба для качества закодированного в нем аналогового сигнала. Это гарантирует уровень верности воспроизведения аналогового сигнала, недостижимый для аналоговых систем.

Цены на компоненты цифровых и аналоговых оптоволоконных систем сопоставимы, а с учетом затрат на монтаж, эксплуатацию и техническое обслуживание цифровые системы дают очевидную экономическую выгоду.

Разрабатывая новую оптоволоконную систему, не тратьте время на анализ преимуществ и недостатков цифровых и аналоговых систем, поскольку выбор совершенно очевиден: цифровые системы лучше с любой точки зрения. Гораздо полезнее будет ограничиться только ими и подобрать те изделия, которые наилучшим образом соответствуют вашим потребностям. Даже среди цифровых систем существует огромное разнообразие решений. Вот некоторые вопросы, которые помогут вам при их оценке:

  • насколько проста установка системы?
    • если передатчик и приемник настраиваются пользователем, то насколько просто это сделать и какие существуют проблемы?
  • компактна ли, прочна и надежна конструкция приборов?
  • выпускаются ли приборы в настольных корпусах или предназначены для установки в стойку? Существуют ли варианты в обоих типах корпусов?
    • пригодны ли приборы для использования как с одномодовыми, так и многомодовыми световодами?
    • обладает ли изготовитель достаточным опытом и репутацией на рынке предлагаемых им изделий?
    • как соотносится цена изделия с ценой традиционных аналоговых систем? (Цифровые приборы в производстве не дороже аналоговых и их стоимость не должна быть выше).

Анализ рынка и сравнение характеристик аналогичных изделий позволит вам в итоге подобрать элементы цифровых оптоволоконных систем, которые верой и правдой будут служить вам в течение многих лет.