Объектно-ориентированное моделирование: Максим Кидрук. Методологии моделирования предметной области

Транскрипт

1 Лабораторная работа 4 «Методология объектно-ориентированного моделирования» 1. Цель работы: Ознакомление с основными элементами определения, представления, проектирования и моделирования программных систем с помощью языка UML. 2. Методические указания Лабораторная работа направлена на ознакомление с основными элементами определения, представления, проектирования и моделирования программных систем с помощью языка UML, получение навыков по применению данных элементов для построения объектноориентированных моделей ИС на основании требований. Требования к результатам выполнения лабораторного практикума: модель системы должна содержать: диаграмму вариантов использования; диаграммы взаимодействия для каждого варианта использования; диаграмму классов, позволяющая реализовать весь описанный функционал ИС; объединенную диаграмму компонентов и размещения для классов указать стереотипы; в зависимости от варианта задания диаграмма размещения должна показывать расположение компонентов в распределенном приложении или связи между встроенным процессором и устройствами. 3. Общие сведения об объектном моделировании ИС Существует множество технологий и инструментальных средств, с помощью которых можно реализовать в некотором смысле оптимальный проект ИС, начиная с этапа анализа и заканчивая созданием программного кода системы. В большинстве случаев эти технологии предъявляют весьма жесткие требования к процессу разработки и используемым ресурсам, а попытки трансформировать их под конкретные проекты оказываются безуспешными. Эти технологии представлены CASE-средствами верхнего уровня или CASE-средствами полного жизненного цикла (upper CASE tools или full life-cycle CASE tools). Они не позволяют оптимизировать деятельность на уровне отдельных элементов проекта, и, как следствие, многие разработчики перешли на так называемые CASE-средства нижнего уровня (lower CASE tools). Однако они столкнулись с новой проблемой проблемой организации взаимодействия между различными командами, реализующими проект. Унифицированный язык объектно-ориентированного моделирования Unified Modeling Language (UML) явился средством достижения компромисса между этими подходами. Существует достаточное количество инструментальных средств, поддерживающих с помощью UML жизненный цикл информационных систем, и, одновременно, UML является достаточно гибким для настройки и поддержки специфики деятельности различных команд разработчиков.

2 Создание UML началось в октябре 1994 г., когда Джим Рамбо и Гради Буч из Rational Software Corporation стали работать над объединением своих методов OMT и Booch. В настоящее время консорциум пользователей UML Partners включает в себя представителей таких грандов информационных технологий, как Rational Software, Microsoft, IBM, Hewlett- Packard, Oracle, DEC, Unisys, IntelliCorp, Platinum Technology. UML представляет собой объектно-ориентированный язык моделирования, обладающий следующими основными характеристиками: является языком визуального моделирования, который обеспечивает разработку репрезентативных моделей для организации взаимодействия заказчика и разработчика ИС, различных групп разработчиков ИС; содержит механизмы расширения и специализации базовых концепций языка. UML это стандартная нотация визуального моделирования программных систем, принятая консорциумом Object Managing Group (OMG) осенью 1997 г., и на сегодняшний день она поддерживается многими объектно-ориентированными CASE-продуктами. UML включает внутренний набор средств моделирования, которые сейчас приняты во многих методах и средствах моделирования. Эти концепции необходимы в большинстве прикладных задач, хотя не каждая концепция необходима в каждой части каждого приложения. Пользователям языка предоставлены возможности: строить модели на основе средств ядра, без использования механизмов расширения для большинства типовых приложений; добавлять при необходимости новые элементы и условные обозначения, если они не входят в ядро, или специализировать компоненты, систему условных обозначений (нотацию) и ограничения для конкретных предметных областей. Язык UML Рис. 1. Интегрированная модель сложной системы в нотации языка UML Стандарт UML предлагает следующий набор диаграмм для моделирования: диаграммы вариантов использования (use case diagrams) для моделирования бизнес-процессов организации и требований к создаваемой системе); диаграммы классов (class diagrams) для моделирования статической структуры классов системы и связей между ними;

3 диаграммы поведения системы (behavior diagrams): диаграммы взаимодействия (interaction diagrams): диаграммы последовательности (sequence diagrams) и кооперативные диаграммы (collaboration diagrams) для моделирования процесса обмена сообщениями между объектами; диаграммы состояний (statechart diagrams) для моделирования поведения объектов системы при переходе из одного состояния в другое; диаграммы деятельностей (activity diagrams) для моделирования поведения системы в рамках различных вариантов использования, или моделирования деятельностей; диаграммы реализации (implementation diagrams): диаграммы компонентов (component diagrams) для моделирования иерархии компонентов (подсистем) системы; диаграммы развертывания (deployment diagrams) для моделирования физической архитектуры системы. Диаграммы вариантов использования Понятие варианта использования (use case) впервые ввел Ивар Якобсон и придал ему такую значимость, что в настоящее время вариант использования превратился в основной элемент разработки и планирования проекта. Вариант использования представляет собой последовательность действий (транзакций), выполняемых системой в ответ на событие, инициируемое некоторым внешним объектом (действующим лицом). Вариант использования описывает типичное взаимодействие между пользователем и системой. В простейшем случае вариант использования определяется в процессе обсуждения с пользователем тех функций, которые он хотел бы реализовать. На языке UML вариант использования изображают следующим образом: Рис.2. Вариант использования Действующее лицо (actor) это роль, которую пользователь играет по отношению к системе. Действующие лица представляют собой роли, а не конкретных людей или наименования работ. Несмотря на то, что на диаграммах вариантов использования они изображаются в виде стилизованных человеческих фигурок, действующее лицо может также быть внешней системой, которой необходима некоторая информация от данной системы. Показывать на диаграмме действующих лиц следует только в том случае, когда им действительно необходимы некоторые варианты использования. На языке UML действующие лица представляют в виде фигур: Рис.3. Действующее лицо (актер) Действующие лица делятся на три основных типа:

4 пользователи; системы; другие системы, взаимодействующие с данной; время. Время становится действующим лицом, если от него зависит запуск каких-либо событий в системе. Связи между вариантами использования и действующими лицами В языке UML на диаграммах вариантов использования поддерживается несколько типов связей между элементами диаграммы. Это связи коммуникации (communication), включения (include), расширения (extend) и обобщения (generalization). Связь коммуникации это связь между вариантом использования и действующим лицом. На языке UML связи коммуникации показывают с помощью однонаправленной ассоциации (сплошной линии). Рис.4. Пример связи коммуникации Связь включения применяется в тех ситуациях, когда имеется какой-либо фрагмент поведения системы, который повторяется более чем в одном варианте использования. С помощью таких связей обычно моделируют многократно используемую функциональность. Связь расширения применяется при описании изменений в нормальном поведении системы. Она позволяет варианту использования только при необходимости использовать функциональные возможности другого. Рис.5. Пример связи включения и расширения С помощью связи обобщения показывают, что у нескольких действующих лиц имеются общие черты.

5 Рис.6. Пример связи обобщения Диаграммы взаимодействия (interaction diagrams) Диаграммы взаимодействия (interaction diagrams) описывают поведение взаимодействующих групп объектов. Как правило, диаграмма взаимодействия охватывает поведение объектов в рамках только одного варианта использования. На такой диаграмме отображается ряд объектов и те сообщения, которыми они обмениваются между собой. Сообщение (message) это средство, с помощью которого объект-отправитель запрашивает у объекта получателя выполнение одной из его операций. Информационное (informative) сообщение это сообщение, снабжающее объектполучатель некоторой информацией для обновления его состояния. Сообщение-запрос (interrogative) это сообщение, запрашивающее выдачу некоторой информации об объекте-получателе. Императивное (imperative) сообщение это сообщение, запрашивающее у объектаполучателя выполнение некоторых действий. Существует два вида диаграмм взаимодействия: диаграммы последовательности (sequence diagrams) и кооперативные диаграммы (collaboration diagrams). Диаграмма последовательности (sequence diagrams) Диаграмма последовательности отражает поток событий, происходящих в рамках варианта использования. Все действующие лица показаны в верхней части диаграммы. Стрелки соответствуют сообщениям, передаваемым между действующим лицом и объектом или между объектами для выполнения требуемых функций. На диаграмме последовательности объект изображается в виде прямоугольника, от которого вниз проведена пунктирная вертикальная линия. Эта линия называется линией жизни (lifeline) объекта. Она представляет собой фрагмент жизненного цикла объекта в процессе взаимодействия. Каждое сообщение представляется в виде стрелки между линиями жизни двух объектов. Сообщения появляются в том порядке, как они показаны на странице сверху вниз. Каждое сообщение помечается как минимум именем сообщения. При желании можно добавить также аргументы и некоторую управляющую информацию. Можно показать самоделегирование (self-delegation) сообщение, которое объект посылает самому себе, при этом стрелка сообщения указывает на ту же самую линию жизни.

6 Рис. 7. Пример диаграммы последовательности Диаграмма кооперации (collaboration diagram) Диаграммы кооперации отображают поток событий через конкретный сценарий варианта использования, упорядочены по времени, а кооперативные диаграммы больше внимания заостряют на связях между объектами. На диаграмме кооперации представлена вся та информация, которая есть и на диаграмме последовательности, но кооперативная диаграмма по-другому описывает поток событий. Из нее легче понять связи между объектами, однако, труднее уяснить последовательность событий. На кооперативной диаграмме так же, как и на диаграмме последовательности, стрелки обозначают сообщения, обмен которыми осуществляется в рамках данного варианта использования. Их временная последовательность указывается путем нумерации сообщений.

7 Рис. 8. Пример диаграммы кооперации Диаграммы классов Общие сведения Диаграмма классов определяет типы классов системы и различного рода статические связи, которые существуют между ними. На диаграммах классов изображаются также атрибуты классов, операции классов и ограничения, которые накладываются на связи между классами. Диаграмма классов UML - это граф, узлами которого являются элементы статической структуры проекта (классы, интерфейсы), а дугами - отношения между узлами (ассоциации, наследование, зависимости). На диаграмме классов изображаются следующие элементы: Класс Пакет (package) - набор элементов модели, логически связанных между собой; Класс (class) - описание общих свойств группы сходных объектов; Интерфейс (interface) - абстрактный класс, задающий набор операций, которые объект произвольного класса, связанного с данным интерфейсом, предоставляет другим объектам. Класс - это группа сущностей (объектов), обладающих сходными свойствами, а именно, данными и поведением. Отдельный представитель некоторого класса называется объектом класса или просто объектом. Под поведением объекта в UML понимаются любые правила взаимодействия объекта с внешним миром и с данными самого объекта. На диаграммах класс изображается в виде прямоугольника со сплошной границей, разделенного горизонтальными линиями на 3 секции: Верхняя секция (секция имени) содержит имя класса и другие общие свойства (в частности, стереотип). В средней секции содержится список атрибутов В нижней - список операций класса, отражающих его поведение (действия, выполняемые классом).

8 Любая из секций атрибутов и операций может не изображаться (а также обе сразу). Для отсутствующей секции не нужно рисовать разделительную линию и как-либо указывать на наличие или отсутствие элементов в ней. На усмотрение конкретной реализации могут быть введены дополнительные секции, например, исключения (Exceptions). Стереотипы классов Рис. 9. Пример диаграммы классов Стереотипы классов это механизм, позволяющий разделять классы на категории. В языке UML определены три основных стереотипа классов: Boundary (граница); Entity (сущность); Control (управление). Граничные классы Граничными классами (boundary classes) называются такие классы, которые расположены на границе системы и всей окружающей среды. Это экранные формы, отчеты, интерфейсы с аппаратурой (такой как принтеры или сканеры) и интерфейсы с другими системами. Чтобы найти граничные классы, надо исследовать диаграммы вариантов использования. Каждому взаимодействию между действующим лицом и вариантом использования должен соответствовать, по крайней мере, один граничный класс. Именно такой класс позволяет действующему лицу взаимодействовать с системой. Классы-сущности Классы-сущности (entity classes) содержат хранимую информацию. Они имеют наибольшее значение для пользователя, и потому в их названиях часто используют термины из предметной области. Обычно для каждого класса-сущности создают таблицу в базе данных. Управляющие классы

9 Управляющие классы (control classes) отвечают за координацию действий других классов. Обычно у каждого варианта использования имеется один управляющий класс, контролирующий последовательность событий этого варианта использования. Управляющий класс отвечает за координацию, но сам не несет в себе никакой функциональности, так как остальные классы не посылают ему большого количества сообщений. Вместо этого он сам посылает множество сообщений. Управляющий класс просто делегирует ответственность другим классам, по этой причине его часто называют классом-менеджером. В системе могут быть и другие управляющие классы, общие для нескольких вариантов использования. Например, может быть класс SecurityManager (менеджер безопасности), отвечающий за контроль событий, связанных с безопасностью. Класс TransactionManager (менеджер транзакций) занимается координацией сообщений, относящихся к транзакциям с базой данных. Могут быть и другие менеджеры для работы с другими элементами функционирования системы, такими как разделение ресурсов, распределенная обработка данных или обработка ошибок. Помимо упомянутых выше стереотипов можно создавать и свои собственные. Атрибуты Атрибут это элемент информации, связанный с классом. Атрибуты хранят инкапсулированные данные класса. Так как атрибуты содержатся внутри класса, они скрыты от других классов. В связи с этим может понадобиться указать, какие классы имеют право читать и изменять атрибуты. Это свойство называется видимостью атрибута (attribute visibility). У атрибута можно определить четыре возможных значения этого параметра: Public (общий, открытый). Это значение видимости предполагает, что атрибут будет виден всеми остальными классами. Любой класс может просмотреть или изменить значение атрибута. В соответствии с нотацией UML общему атрибуту предшествует знак «+». Private (закрытый, секретный). Соответствующий атрибут не виден никаким другим классом. Закрытый атрибут обозначается знаком в соответствии с нотацией UML. Protected (защищенный). Такой атрибут доступен только самому классу и его потомкам. Нотация UML для защищенного атрибута это знак «#». Package or Implementation (пакетный). Предполагает, что данный атрибут является общим, но только в пределах его пакета. Этот тип видимости не обозначается никаким специальным значком. В общем случае, атрибуты рекомендуется делать закрытыми или защищенными. Это позволяет лучше контролировать сам атрибут и код. С помощью закрытости или защищенности удается избежать ситуации, когда значение атрибута изменяется всеми классами системы. Вместо этого логика изменения атрибута будет заключена в том же классе, что и сам этот атрибут. Задаваемые параметры видимости повлияют на генерируемый код. Операции Операции реализуют связанное с классом поведение. Операция включает три части имя, параметры и тип возвращаемого значения. Параметры это аргументы, получаемые операцией «на входе». Тип возвращаемого значения относится к результату действия операции.

10 На диаграмме классов можно показывать как имена операций, так и имена операций вместе с их параметрами и типом возвращаемого значения. Чтобы уменьшить загруженность диаграммы, полезно бывает на некоторых из них показывать только имена операций, а на других их полную сигнатуру. В языке UML операции имеют следующую нотацию: Имя Операции (аргумент: тип данных аргумента, аргумент2:тип данных аргумента2,...): тип возвращаемого значения Следует рассмотреть четыре различных типа операций: Операции реализации; Операции управления; Операции доступа; Вспомогательные операции. Операции реализации Операции реализации (implementor operations) реализуют некоторые бизнес-функции. Такие операции можно найти, исследуя диаграммы взаимодействия. Диаграммы этого типа фокусируются на бизнес-функциях, и каждое сообщение диаграммы, скорее всего, можно соотнести с операцией реализации. Каждая операция реализации должна быть легко прослеживаема до соответствующего требования. Это достигается на различных этапах моделирования. Операция выводится из сообщения на диаграмме взаимодействия, сообщения исходят из подробного описания потока событий, который создается на основе варианта использования, а последний на основе требований. Возможность проследить всю эту цепочку позволяет гарантировать, что каждое требование будет реализовано в коде, а каждый фрагмент кода реализует какое-то требование. Операции управления Операции управления (manager operations) управляют созданием и уничтожением объектов. В эту категорию попадают конструкторы и деструкторы классов. Операции доступа Атрибуты обычно бывают закрытыми или защищенными. Тем не менее, другие классы иногда должны просматривать или изменять их значения. Для этого существуют операции доступа (access operations). Такой подход дает возможность безопасно инкапсулировать атрибуты внутри класса, защитив их от других классов, но все же позволяет осуществить к ним контролируемый доступ. Создание операций Get и Set (получения и изменения значения) для каждого атрибута класса является стандартом. Вспомогательные операции Вспомогательными (helper operations) называются такие операции класса, которые необходимы ему для выполнения его ответственностей, но о которых другие классы не должны ничего знать. Это закрытые и защищенные операции класса. Чтобы идентифицировать операции, выполните следующие действия: 1. Изучите диаграммы последовательности и кооперативные диаграммы. Большая часть сообщений на этих диаграммах является операциями реализации. Рефлексивные сообщения будут вспомогательными операциями.

11 2. Рассмотрите управляющие операции. Может потребоваться добавить конструкторы и деструкторы. 3. Рассмотрите операции доступа. Для каждого атрибута класса, с которым должны будут работать другие классы, надо создать операции Get и Set. Связи Связь представляет собой семантическую взаимосвязь между классами. Она дает классу возможность узнавать об атрибутах, операциях и связях другого класса. Иными словами, чтобы один класс мог послать сообщение другому на диаграмме последовательности или кооперативной диаграмме, между ними должна существовать связь. Существуют четыре типа связей, которые могут быть установлены между классами: ассоциации, зависимости, агрегации и обобщения. Ассоциации Ассоциация (association) это семантическая связь между классами. Их рисуют на диаграмме классов в виде обыкновенной линии. Рис. 10. Связь ассоциация Ассоциации могут быть двунаправленными, как в примере, или однонаправленными. На языке UML двунаправленные ассоциации рисуют в виде простой линии без стрелок или со стрелками с обеих ее сторон. На однонаправленной ассоциации изображают только одну стрелку, показывающую ее направление. Направление ассоциации можно определить, изучая диаграммы последовательности и кооперативные диаграммы. Если все сообщения на них отправляются только одним классом и принимаются только другим классом, но не наоборот, между этими классами имеет место однонаправленная связь. Если хотя бы одно сообщение отправляется в обратную сторону, ассоциация должна быть двунаправленной. Ассоциации могут быть рефлексивными. Рефлексивная ассоциация предполагает, что один экземпляр класса взаимодействует с другими экземплярами этого же класса. Зависимости Связи зависимости (dependency) также отражают связь между классами, но они всегда однонаправлены и показывают, что один класс зависит от определений, сделанных в другом. Например, класс A использует методы класса B. Тогда при изменении класса B необходимо произвести соответствующие изменения в классе A. Зависимость изображается пунктирной линией, проведенной между двумя элементами диаграммы, и считается, что элемент, привязанный к концу стрелки, зависит от элемента, привязанного к началу этой стрелки.

12 Рис. 11. Связь зависимость При генерации кода для этих классов к ним не будут добавляться новые атрибуты. Однако, будут созданы специфические для языка операторы, необходимые для поддержки связи. Агрегации Агрегации (aggregations) представляют собой более тесную форму ассоциации. Агрегация это связь между целым и его частью. Например, у вас может быть класс Автомобиль, а также классы Двигатель, Покрышки и классы для других частей автомобиля. В результате объект класса Автомобиль будет состоять из объекта класса Двигатель, четырех объектов Покрышек и т. д. Агрегации визуализируют в виде линии с ромбиком у класса, являющегося целым: Рис. 11. Связь агрегация В дополнение к простой агрегации UML вводит более сильную разновидность агрегации, называемую композицией. Согласно композиции, объект-часть может принадлежать только единственному целому, и, кроме того, как правило, жизненный цикл частей совпадает с циклом целого: они живут и умирают вместе с ним. Любое удаление целого распространяется на его части. Такое каскадное удаление нередко рассматривается как часть определения агрегации, однако оно всегда подразумевается в том случае, когда множественность роли составляет 1..1; например, если необходимо удалить Клиента, то это удаление должно распространиться и на Заказы (и, в свою очередь, на Строки заказа). Обобщения (Наследование) Обобщение (наследование) - это отношение типа общее-частное между элементами модели. С помощью обобщений (generalization) показывают связи наследования между двумя классами. Большинство объектно-ориентированных языков непосредственно поддерживают концепцию наследования. Она позволяет одному классу наследовать все атрибуты, операции и связи другого. Наследование пакетов означает, что в пакетенаследнике все сущности пакета-предка будут видны под своими собственными именами (т.е. пространства имен объединяются). Наследование показывается сплошной линией, идущей от класса-потомка к классу-предку (в терминологии ООП - от потомка к предку, от сына к отцу, или от подкласса к суперклассу). Со стороны более общего элемента рисуется большой полый треугольник.

13 Рис. 12. Пример связи наследование Помимо наследуемых, каждый подкласс имеет свои собственные уникальные атрибуты, операции и связи. Множественность Множественность (multiplicity) показывает, сколько экземпляров одного класса взаимодействуют с помощью этой связи с одним экземпляром другого класса в данный момент времени. Например, при разработке системы регистрации курсов в университете можно определить классы Course (курс) и Student (студент). Между ними установлена связь: у курсов могут быть студенты, а у студентов курсы. Вопросы, на который должен ответить параметр множественности: «Сколько курсов студент может посещать в данный момент? Сколько студентов может за раз посещать один курс?» Так как множественность дает ответ на оба эти вопроса, её индикаторы устанавливаются на обоих концах линии связи. В примере регистрации курсов мы решили, что один студент может посещать от нуля до четырех курсов, а один курс могут слушать от 0 до 20 студентов. В языке UML приняты определенные нотации для обозначения множественности. Таблица 1 - Обозначения множественности связей в UML Имена связей Связи можно уточнить с помощью имен связей или ролевых имен. Имя связи это обычно глагол или глагольная фраза, описывающая, зачем она нужна. Например, между классом Person (человек) и классом Company (компания) может существовать ассоциация. Можно задать в связи с этим вопрос, является ли объект класса Person клиентом компании, её

14 сотрудником или владельцем? Чтобы определить это, ассоциацию можно назвать «employs» (нанимает): Роли Рис. 13. Пример имен связей Ролевые имена применяют в связях ассоциации или агрегации вместо имен для описания того, зачем эти связи нужны. Возвращаясь к примеру с классами Person и Company, можно сказать, что класс Person играет роль сотрудника класса Company. Ролевые имена это обычно имена существительные или основанные на них фразы, их показывают на диаграмме рядом с классом, играющим соответствующую роль. Как правило, пользуются или ролевым именем, или именем связи, но не обоими сразу. Как и имена связей, ролевые имена не обязательны, их дают, только если цель связи не очевидна. Пример ролей приводится ниже: Пакет. Механизм пакетов Рис. 14. Пример ролей связей В контексте диаграмм классов, пакет - это вместилище для некоторого набора классов и других пакетов. Пакет является самостоятельным пространством имен. Рис. 15. Обозначение пакета в UML В UML нет каких-либо ограничений на правила, по которым разработчики могут или должны группировать классы в пакеты. Но есть некоторые стандартные случаи, когда такая группировка уместна, например, тесно взаимодействующие классы, или более общий случай - разбиение системы на подсистемы. Пакет физически содержит сущности, определенные в нем (говорят, что "сущности принадлежат пакету"). Это означает, что если будет уничтожен пакет, то будут уничтожено и все его содержимое. Существует несколько наиболее распространенных подходов к группировке. Во-первых, можно группировать их по стереотипу. В таком случае получается один пакет с классами-сущностями, один с граничными классами, один с управляющими классами и т.д. Этот подход может быть полезен с точки зрения размещения готовой системы, поскольку все находящиеся на клиентских машинах пограничные классы уже оказываются в одном пакете.

15 Другой подход заключается в объединении классов по их функциональности. Например, в пакете Security (безопасность) содержатся все классы, отвечающие за безопасность приложения. В таком случае другие пакеты могут называться Employee Maintenance (Работа с сотрудниками), Reporting (Подготовка отчетов) и Error Handling (Обработка ошибок). Преимущество этого подхода заключается в возможности повторного использования. Механизм пакетов применим к любым элементам модели, а не только к классам. Если для группировки классов не использовать некоторые эвристики, то она становится произвольной. Одна из них, которая в основном используется в UML, это зависимость. Зависимость между двумя пакетами существует в том случае, если между любыми двумя классами в пакетах существует любая зависимость. Таким образом, диаграмма пакетов представляет собой диаграмму, содержащую пакеты классов и зависимости между ними. Строго говоря, пакеты и зависимости являются элементами диаграммы классов, то есть диаграмма пакетов это форма диаграммы классов. Рис. 16. Пример диаграммы пакетов Зависимость между двумя элементами имеет место в том случае, если изменения в определении одного элемента могут повлечь за собой изменения в другом. Что касается классов, то причины для зависимостей могут быть самыми разными: один класс посылает сообщение другому; один класс включает часть данных другого класса; один класс использует другой в качестве параметра операции. Если класс меняет свой интерфейс, то любое сообщение, которое он посылает, может утратить свою силу. Пакеты не дают ответа на вопрос, каким образом можно уменьшить количество зависимостей в вашей системе, однако они помогают выделить эти зависимости, а после того, как они все окажутся на виду, остается только поработать над снижением их количества. Диаграммы пакетов можно считать основным средством управления общей структурой системы. Пакеты являются жизненно необходимым средством для больших проектов. Их следует использовать в тех случаях, когда диаграмма классов, охватывающая всю систему в целом и размещенная на единственном листе бумаги формата А4, становится нечитаемой. Диаграммы состояний Диаграммы состояний определяют все возможные состояния, в которых может находиться конкретный объект, а также процесс смены состояний объекта в результате наступления некоторых событий. Существует много форм диаграмм состояний, незначительно отличающихся друг от друга семантикой. На диаграмме имеются два специальных состояния начальное (start) и конечное (stop). Начальное состояние выделено черной точкой, оно соответствует состоянию объекта,

16 когда он только что был создан. Конечное состояние обозначается черной точкой в белом кружке, оно соответствует состоянию объекта непосредственно перед его уничтожением. На диаграмме состояний может быть одно и только одно начальное состояние. В то же время, может быть столько конечных состояний, сколько вам нужно, или их может не быть вообще. Когда объект находится в каком-то конкретном состоянии, могут выполняться различные процессы. Процессы, происходящие, когда объект находится в определенном состоянии, называются действиями (actions). С состоянием можно связывать данные пяти типов: деятельность, входное действие, выходное действие, событие и история состояния. Деятельность Деятельностью (activity) называется поведение, реализуемое объектом, пока он находится в данном состоянии. Деятельность это прерываемое поведение. Оно может выполняться до своего завершения, пока объект находится в данном состоянии, или может быть прервано переходом объекта в другое состояние. Деятельность изображают внутри самого состояния, ей должно предшествовать слово do (делать) и двоеточие. Входное действие Входным действием (entry action) называется поведение, которое выполняется, когда объект переходит в данное состояние. Данное действие осуществляется не после того, как объект перешел в это состояние, а, скорее, как часть этого перехода. В отличие от деятельности, входное действие рассматривается как непрерываемое. Входное действие также показывают внутри состояния, ему предшествует слово entry (вход) и двоеточие. Выходное действие Выходное действие (exit action) подобно входному. Однако, оно осуществляется как составная часть процесса выхода из данного состояния. Оно является частью процесса такого перехода. Как и входное, выходное действие является непрерываемым. Выходное действие изображают внутри состояния, ему предшествует слово exit (выход) и двоеточие. Поведение объекта во время деятельности, при входных и выходных действиях может включать отправку события другому объекту. В этом случае описанию деятельности, входного действия или выходного действия предшествует знак «^». Соответствующая строка на диаграмме выглядит как Do: ^Цель.Событие (Аргументы) Здесь Цель это объект, получающий событие, Событие это посылаемое сообщение, а Аргументы являются параметрами посылаемого сообщения. Деятельность может также выполняться в результате получения объектом некоторого события. При получении некоторого события выполняется определенная деятельность. Переходом (Transition) называется перемещение из одного состояния в другое. Совокупность переходов диаграммы показывает, как объект может перемещаться между своими состояниями. На диаграмме все переходы изображают в виде стрелки, начинающейся на первоначальном состоянии и заканчивающейся последующим.

17 Переходы могут быть рефлексивными. Объект может перейти в то же состояние, в котором он в настоящий момент находится. Рефлексивные переходы изображают в виде стрелки, начинающейся и завершающейся на одном и том же состоянии. У перехода существует несколько спецификаций. Они включают события, аргументы, ограждающие условия, действия и посылаемые события. События Событие (event) это то, что вызывает переход из одного состояния в другое. Событие размещают на диаграмме вдоль линии перехода. На диаграмме для отображения события можно использовать как имя операции, так и обычную фразу. Большинство переходов должны иметь события, так как именно они, прежде всего, заставляют переход осуществиться. Тем не менее, бывают и автоматические переходы, не имеющие событий. При этом объект сам перемещается из одного состояния в другое со скоростью, позволяющей осуществиться входным действиям, деятельности и выходным действиям. Ограждающие условия Ограждающие условия (guard conditions) определяют, когда переход может, а когда не может осуществиться. В противном случае переход не осуществится. Ограждающие условия изображают на диаграмме вдоль линии перехода после имени события, заключая их в квадратные скобки. Ограждающие условия задавать необязательно. Однако если существует несколько автоматических переходов из состояния, необходимо определить для них взаимно исключающие ограждающие условия. Это поможет читателю диаграммы понять, какой путь перехода будет автоматически выбран. Действие Действием (action), как уже говорилось, является непрерываемое поведение, осуществляющееся как часть перехода. Входные и выходные действия показывают внутри состояний, поскольку они определяют, что происходит, когда объект входит или выходит из него. Большую часть действий, однако, изображают вдоль линии перехода, так как они не должны осуществляться при входе или выходе из состояния. Действие рисуют вдоль линии перехода после имени события, ему предшествует косая черта. Событие или действие могут быть поведением внутри объекта, а могут представлять собой сообщение, посылаемое другому объекту. Если событие или действие посылается другому объекту, перед ним на диаграмме помещают знак «^».

18 Рис. 17. Пример диаграммы состояний Диаграммы состояний не надо создавать для каждого класса, они применяются только в сложных случаях. Если объект класса может существовать в нескольких состояниях и в каждом из них ведет себя по-разному, для него может потребоваться такая диаграмма. Диаграммы размещения Диаграмма размещения (deployment diagram) отражает физические взаимосвязи между программными и аппаратными компонентами системы. Она является хорошим средством для того, чтобы показать маршруты перемещения объектов и компонентов в распределенной системе. Каждый узел на диаграмме размещения представляет собой некоторый тип вычислительного устройства в большинстве случаев, часть аппаратуры. Эта аппаратура может быть простым устройством или датчиком, а может быть и мэйнфреймом. Диаграмма размещения показывает физическое расположение сети и местонахождение в ней различных компонентов. Рис. 19. Пример диаграммы размещения Диаграмма размещения используется менеджером проекта, пользователями, архитектором системы и эксплуатационным персоналом, чтобы понять физическое размещение системы и расположение её отдельных подсистем.

19 Диаграммы компонентов Диаграммы компонентов показывают, как выглядит модель на физическом уровне. На них изображены компоненты программного обеспечения и связи между ними. При этом на такой диаграмме выделяют два типа компонентов: исполняемые компоненты и библиотеки кода. Каждый класс модели (или подсистема) преобразуется в компонент исходного кода. После создания они сразу добавляются к диаграмме компонентов. Между отдельными компонентами изображают зависимости, соответствующие зависимостям на этапе компиляции или выполнения программы. Рис. 18. Пример диаграммы компонентов Диаграммы компонентов применяются теми участниками проекта, кто отвечает за компиляцию системы. Из нее видно, в каком порядке надо компилировать компоненты, а также какие исполняемые компоненты будут созданы системой. На такой диаграмме показано соответствие классов реализованным компонентам. Она нужна там, где начинается генерация кода. Объединение диаграмм компонентов и развертывания В некоторых случаях допускается размещать диаграмму компонентов на диаграмме развертывания. Это позволяет показать какие компоненты выполняются и на каких узлах. 4. Порядок выполнения работы 1. Изучить предлагаемый теоретический материал. 2. Постройте диаграмму вариантов использования для выбранной информационной системы. 3. Выполните реализацию вариантов использования в терминах взаимодействующих объектов и представляющую собой набор диаграмм: диаграмм классов, реализующих вариант использования; диаграмм взаимодействия (диаграмм последовательности или кооперативных диаграмм), отражающих взаимодействие объектов в процессе реализации варианта использования. 4. Разделить классы по пакетам использую один из механизм разбиения.

20 5. Постройте диаграмму состояний для конкретных объектов информационной системы. 6. Построить отчёт, включающий все полученные уровни модели, описание функциональных блоков, потоков данных, хранилищ и внешних объектов.


ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ КЕМЕРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра ЮНЕСКО по Новым информационным технологиям А.М. Гудов, С.Ю. Завозкин, С.Н. Трофимов ТЕХНОЛОГИЯ РАЗРАБОТКА ПРОГРАММНОГО

Методические указания к выполнению расчетно-графической работы Цель работы: Ознакомление с основными элементами определения, представления, проектирования и моделирования информационных систем с помощью

ОСНОВНЫЕ СВЕДЕНИЯ О ЯЗЫКЕ UML СРЕДСТВА UML Унифицированный язык моделирования UML (Unified Modeling Language) представляет собой язык для определения, представления, проектирования и документирования программных

4 Унифицированный язык визуального моделирования Unified Modeling Language (UML) Диаграммы в UML. Классы и стереотипы классов. Ассоциативные классы. Основные элементы диаграмм взаимодействия объекты, сообщения.

Лекция 2.1 Язык UML. Диаграммы вариантов использования 1. Язык UML Содержание 2. Диаграммы вариантов использования Вариант использования Актеры Отношения 3. Пример диаграммы вариантов использования Графическая

Федеральное агентство железнодорожного транспорта филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Сибирский государственный университет

CASE технологии Лекция 5 1 Язык UML: виды диаграмм UML 1.5 определял двенадцать типов диаграмм, разделенных на три группы: четыре типа диаграмм представляют статическую структуру приложения; пять представляют

Глава 1. Основные сведения о языке UML Самое лучшее средство это большая диаграмма, приколотая к стене. Даг Скотт 1.1. Цели и история создания языка UML Унифицированный язык моделирования UML (Unified

12_Этапы проектирования ИС с применением UML Основные типы UML-диаграмм, используемые в проектировании информационных систем. Взаимосвязи между диаграммами. Поддержка UML итеративного процесса проектирования

Конспект по языку UML Составитель Лейченок Е.А. гр.521701 Унифицированный язык моделирования (Unified Modeling Language, UML) является графическим языком для визуализации, специфицирования, конструирования

Лабораторная работа 1 «Диаграмма вариантов использования» Оглавление Понятие языка UML... 3 Диаграмма вариантов использования (usecase diagram)... 6 Вариант использования... 7 Актеры... 7 Интерфейсы...

Лекция 3 часть 6: Элементы графической нотации диаграммы компонентов Аннотация: Назначение диаграммы компонентов, ее основные элементы. Особенности физического представления программных систем. Компоненты

Лабораторная работа Диаграмма вариантов использования Цель работы:. Знакомство с основными понятиями UML 2. Знакомство со средой моделирования Rational Rose 3. Изучение компонентов модели 4. Построение

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ Экономический факультет Кафедра информационных систем УТВЕРЖДАЮ

UML диаграммы Диаграмма классов (2) Диаграмма прецедентов (22) Диаграмма активности (35) Диаграмма взаимодействия (51) Диаграмма классов Класс (class) - категория вещей, которые имеют общие атрибуты и

Диаграммы взаимодействия объектов в UML В данной статье рассматриваются во всех подробностях диаграммы сотрудничества (collaboration diagram) и диаграммы последовательности взаимодействия (sequence diagram)

CASE технологии Лекция 4 1 Язык UML: предыстория середина 1970-х конец 1980-х годов Появление и расцвет объектно-ориентированного проектирования (ООП) «Война методов» проектирования середина 1990-х годов

Лекция 3 часть2: Отношения и их графическое изображение на диаграмме классов Ключевые слова: UML, ассоциация, association relationship, обобщение, generalization relationship, агрегация, композиция, представление,

Лекция 3 часть 4 Элементы графической нотации диаграммы Аннотация: Назначение диаграммы. Объекты, их графическое представление. Линия жизни и фокус управления. Особенности изображения моментов создания

ОбАн и ПРС Лекция 1 стр 1 из 7 Графические примитивы UML стандарта Парадигмы UML стандарта А Словарь языка Б Правила над словарем В Механизмы Словарь языка Сущности Поведенческие сущности Группирующие

Лабораторная работа 2 «Диаграмма классов» Оглавление Общее понятие... 3 Класс... 3 Атрибуты... 4 Операция... 6 Отношения между классами... 7 Отношение зависимости... 7 Отношение ассоциации... 8 Отношение

Лабораторная работа 3 «Диаграмма состояний и диаграмма деятельности» Оглавление ДИАГРАММА СОСТОЯНИЙ... 3 Общее понятие... 3 Состояние... 4 Переход... 6 Составное состояние и подсостояние... 8 Примеры диаграмм

Объектно-ориентированный анализ и дизайн Copyright Мухортов В. В., Няньчук-Татарский Н. А., 2001-2004 Copyright ООО «Интекс», 2003-2004 Классы Class набор объектов с общей структурой и поведением Interface

ЛАБОРАТОРНАЯ РАБОТА 4 РАЗРАБОТКА ФИЗИЧЕСКОГО ПРЕДСТАВЛЕНИЯ ПРОЦЕССА ФУНКЦИОНИРОВАНИЯ ПРОГРАММНОГО СРЕДСТВА С ИСПОЛЬЗОВАНИЕМ UML 1 Цель занятия Научиться формировать диаграммы компонентов и диаграммы развертывания

Федеральное агентство связи Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования ПОВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ

Цель: Лабораторная работа 7: Основы UML Целью данной работы является знакомство с базовыми приёмами проектирования систем и процессов с использованием универсального языка моделирования (UML) Задание:

Золотов Сергей Юрьевич к.т.н., доцент кафедры АСУ Проектирование информационных систем Вебинар 3 «Суть объектно-ориентированного подхода к проектированию информационных систем» План вебинара Смысл объектно-ориентированного

ПРОГРАММНАЯ ИНЖЕНЕРИЯ РЕАЛИЗАЦИЯ ПРЕЦЕДЕНТОВ РАДЧЕНКО Г.И., КАФЕДРА СП ЮУРГУ АНАЛИЗ ПРЕЦЕДЕНТА Аналитическая модель классов это статическая структура системы, а реализация прецедентов показывает, как взаимодействуют

Предисловие Введение в UML и UP Что такое UML? Что такое UML? Рождение UML MDA - будущее UML Почему «унифицированный»? Объекты и UML Структура UML Строительные блоки UML Общие механизмы UML Архитектура

Лабораторная работа 4 «Введение в Rational Unified Process. Паттерны» Цель работы научиться разрабатывать модели потока работ; понять место данной модели при определении функций разрабатываемой системы

CASE-СРЕДСТВА РАЗРАБОТКИ ИНФОРМАЦИОННОГО ОБЕСПЕЧЕНИЯ САПР Лекция 5 «Разработка требований к информационному обеспечению» Объектно-ориентированный подход ООП основан на представлении предметнойобласти задачи

UML - Universal Modelling Language общие сведения UML - Universal Modelling Language универсальный язык моделирования предназначен для создания унифицированных описаний моделей системных объектов. Его

Санкт-Петербургский государственный университет информационных технологий, механики и оптики Описание самостоятельной работы студентов (СРС) «Анализ и проектирование на UML» Новиков Ф.А., Канд. физ.-мат.

1 1.Введение... 3 2. Основы... 4 3. Типы диаграмм... 5 3.1 Диаграмма вариантов использования (Use-case diagram). 5 3.2 Диаграмма последовательностей (Sequence diagram)... 13 3.3 Диаграмма классов... 19

Лекция 2.5 Диаграмма развертывания. Диаграмма синхронизации 1 Диаграмма развертывания (deployment diagram) 2 1.1 Артефакт 3 1.2 Узел 3 1.3 Соединения 5 1.3.1 Отношения зависимости 6 1.4 Рекомендации по

ЛАБОРАТОРНЫЕ РАБОТЫ ПО КУРСУ ТЕОРИЯ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ И СИСТЕМ 1. Цель работы ЛАБОРАТОРНАЯ РАБОТА 4 Создание диаграмм взаимодействия Получить навыки построения диаграмм последовательности и кооперации

ПРОГРАММНАЯ ИНЖЕНЕРИЯ ОБЪЕКТНО-ОРИЕНТИРОВАННЫЙ АНАЛИЗ РАДЧЕНКО Г.И., КАФЕДРА СП ЮУРГУ АНАЛИЗ ПРЕЦЕДЕНТА Деятельность UP «Анализ прецедента» включает: создание классов анализа реализации прецедентов Классы

Глава 5 Моделирование бизнес-процессов Основные положения Для анализа проблем в среде IS/IT наиболее подходящим является метод моделирования бизнес-процессов. Модель бизнес-процесса помогает нам при определении

Содержание Предисловие 19 Введение 21 Образовательные и Web-ресурсы 22 Для кого предназначена эта книга 22 Что необходимо знать 22 Примеры на языке Java 22 Структура книги 23 Об авторе 23 Контакты 24 Дополнения

Графические диаграммы агентов SObjectizer Борис Сивко Intervale 2007.11.20 Содержание 1 Введение 1 2 Типы диаграмм 2 3 Диаграмма операций 2 3.1 Используемые элементы.................... 2 3.1.1 Агенты..........................

ПРОГРАММНАЯ ИНЖЕНЕРИЯ Классы анализа РАДЧЕНКО Г.И., КАФЕДРА СП ЮУРГУ ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОЕКТИРОВАНИЕ ПОСРЕДСТВОМ UML РАДЧЕНКО Г.И., КАФЕДРА СП ЮУРГУ 2 НОТАЦИЯ ОБЪЕКТОВ UML Прямоугольник с двумя

Реляционная модель данных Основные понятия реляционной модели Домен - это совокупность значений, из которой берутся значения соответствующих атрибутов определенного отношения. С точки зрения программирования,

Моделирование потоков 1 Моделирование потоков В основе данной методологии (методологии Gane/Sarson) лежит построение модели анализируемой ИС проектируемой или реально существующей. В соответствии с методологией

РАЗРАБОТКА ИС Жизненный цикл ИС Определение 1: Жизненный цикл ИС это процесс ее построения и развития. Определение 2: Жизненный цикл ИС период времени, который начинается с момента принятия решения о необходимости

Моделирование данных Модель «сущность-связь» Рассматриваемые вопросы: Элементы модели «сущность-связь» Диаграммы «сущность-связь» Слабые сущности Подтипы сущностей Рассматриваемые вопросы: Пример ER-диаграммы

Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» Кафедра электронных вычислительных машин А. В. Отвагин, Н. А.

ГОУ ВПО Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых ЯЗЫК ВИЗУАЛЬНОГО МОДЕЛИРОВАНИЯ UML Методические указания к курсовой работе по дисциплине

Лабораторная работа 3 УПРАВЛЕНИЕ ТРЕБОВАНИЯМИ К АВТОМАТИЗИРОВАННЫМ СИСТЕМАМ С ПОМОЩЬЮ IBM RATIONAL REQUISITE PRO. СОЗДАНИЕ СЦЕНАРИЕВ ИСПОЛЬЗОВАНИЯ Цель работы: разработка сценариев использования программного

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Владимирский государственный университет имени

Лекция 2 Средства моделирования бизнес-процессов 2.1 Введение BPMN (Business Process Modeling Notation) графическая нотация для моделирования бизнес-процессов. BPMN была разработана Business Process Management

КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ Визуальное моделирование систем в StarUML Казань 2013 УДК 004.4"22 519.682.6 Печатается по

Вичугова Анна Александровна, ассистент кафедры автоматики и компьютерных систем Института кибернетики ТПУ. E-mail: [email protected] Область научных интересов: бизнес-моделирование, структурный анализ, базы

ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ Федеральное государственное бюджетное образовательное учреждение высшего образования «ПОВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ» Кафедра информационных

Метаязык построения визуальных языков моделирования Л.Н. Лядова, А.О. Сухов Пермский государственный университет [email protected], [email protected] Введение С увеличением числа требований к адаптируемым

ПРОГРАММНАЯ ИНЖЕНЕРИЯ АНАЛИЗ И ПРОЕКТИРОВАНИЕ РАДЧЕНКО Г.И., КАФЕДРА СП ЮУРГУ ПРОЕКТИРОВАНИЕ ПО РАДЧЕНКО Г.И., КАФЕДРА СП ЮУРГУ 2 ЧТО ТАКОЕ ПРОЕКТИРОВАНИЕ ПО? Проектирование ПО это осознанный выбор решений

Лабораторная работа 7. ДИАГРАММЫ ПОСЛЕДОВАТЕЛЬНОСТИ. Диаграмма последовательностей показывает последовательность, в которой объекты в процессе взаимодействия обмениваются сообщениями. Схемы последовательностей

Тема: ПОДХОДЫ К ПРОЕКТИРОВАНИЮ СЛОЖНЫХ СИСТЕМ. Методика Джексона. Содержание: введение структурное программирование. методика Джексона "10 правил" 1. Введение В настоящий момент во всем мире наиболее широко

При разработке программного обеспечения существует несколько подходов к моделированию. Важнейшие из них – алгоритмический (структурный) и объектно-ориентированный.

Структурный метод представляет традиционный подход к созданию про­граммного обеспечения. Основным строительным блоком является процедура или функция, а внимание уделяется прежде всего вопросам передачи управления и декомпозиции больших алгоритмов на меньшие.

Наиболее современным подходом к разработке программного обеспечения яв­ляется объектно-ориентированный. Здесь в качестве основного строительного блока выступает объект или класс. В самом общем смысле объект - это сущность, обычно извлекаемая из словаря предметной области или решения, а класс явля­ется описанием множества однотипных объектов. Каждый объект обладает иден­тичностью (его можно поименовать или как-то по-другому отличить от прочих объектов), состоянием (обычно с объектом бывают связаны некоторые данные) и поведением (с ним можно что-то делать или он сам может что-то делать с други­ми объектами).

В качестве примера можно рассмотреть трехуровневую архитектуру биллинговой системы, состоящую из интерфейса пользователя, программного обеспечения промежуточного слоя и базы данных. Интерфейс содержит конкрет­ные объекты - кнопки, меню и диалоговые окна. База данных также состоит из конкретных объектов, а именно таблиц, представляющих сущности предметной области: клиентов, продукты и заказы. Программы промежуточного слоя включа­ют такие объекты, как транзакции и бизнес-правила, а также более абстрактные представления сущностей предметной области (клиентов, продуктов и заказов).

Если принять объектно-ориентированный взгляд на мир, необходимо отве­тить на ряд вопросов. Какая структура должна быть у хорошей объ­ектно-ориентированной архитектуры? Какие артефакты должны быть созданы в процессе работы над проектом? Кто должен создавать их? И, наконец, как оценить результат?

Визуализация, специфицирование, конструирование и документирование объектно-ориентированных систем - это и есть назначение языка UML.

Объектно-ориентированные языки моделирования появились в период с сере­дины 70-х до конца 80-х годов, когда исследователи, поставленные перед необхо­димостью учитывать новые возможности объектно-ориентированных языков программирования и требования, предъявляемые все более сложными приложени­ями, вынуждены были начать разработку различных альтернативных подходов к анализу и проектированию.

Технология разработки программных систем, в основу которых положена парадигма представления окружающего мира в виде объектов, являющихся экземплярами соответствующих классов, получила название - объектно-ориентированный анализ и проектирование (ООАП) - OOA&D (Object-Oriented Analysis/Design). В рамках этой технологии язык UML является средством графического представления результатов моделирования не только программного обеспечения, но и более широких классов систем и бизнес-приложений, с использованием объектно-ориентированных понятий. При этом явным образом обеспечивается взаимосвязь между базовыми понятиями для моделей концептуального и физического уровня, достигается масштабируемость моделей, что особенно важно для сложных многоцелевых систем.

Сами разработчики языка определяют его как «общецелевой язык визуального моделирования, разработанный для спецификации, визуализации, проектирования и документирования компонентов программного обеспечения, бизнес-процессов и других систем» .

Языки объектно-ориентированного моделирования стали появляться между серединой 1970-х и концом 1980-х годов, когда началась разработка подходов к объектно-ориентированному анализу и проектированию (ООАП) систем. К середине 1990-х годов некоторые из методов были существенно улучшены. Известными в этот период становятся: метод Гради Буча (Grady Booch - Воосh"93); метод Джеймса Румбаха (James Rumbaugh - Object Modeling Technique); метод Айвара Джекобсона (IvarJacobson- Object Orienter Software Engineering).

История языка UML (Unified Modeling Language) берет начало с октября 1994 года, когда Буч и Румбах из Rational Software Согрогаtion начали работу по |унификации своих методов. Проект так называемого унифицированного метода версии 0.8 был подготовлен и опубликован в ноябре 1995 года. Осенью того же года к ним присоединился Джекобсон, главный технолог из компании ObjectoryАВ (Швеция), с целью интеграции своего метода ООSЕ с двумя предыдущими.

В этот период поддержка разработки языка UML становится одной из целей консорциума OMG (Object Management Group) – образован в 1989 году. Язык UML приобретает статус второго стратегического направления в работе OMG. Усилия Г. Буча, Дж. Румбаха и А. Джекобсона привели к появлению документов, содержащих описание собственно языка UML версии 0.9 (1996 г.)

Rational Software Согрогаtion вместе с несколькими организациями, изъявили желание выделить ресурсы для разработки строгого определения языка UML, учредила консорциум партнеров UML В январе 1997 года опубликован документ с описанием языка UML 1.0.

Из более чем 800 компаний и организаций, входящих в настоящее время в состав консорциума OMG, особую роль продолжает играть Rational Software Согрогаtion, которая стояла у истоков разработки языка UML. Эта компания разработала и выпустила в продажу одно из первых инструментальных СА8Е-средств Rational! Rose 98, в котором была реализована нотация различных диаграмм языка UML. В феврале 2003 г. компания Rational Software Согрогаtion была приобретена IBM, и с этого момента она имеет официальное название IBM Rational Software.

В настоящее время все вопросы дальнейшей разработки языка UML скон­центрированы в рамках консорциума OMG. Соответствующая группа специалистов обеспечивает публикацию материалов, содержащих описание последующих версий языка UML. Очередной этап развития данного языка закончился в марте 1999 года, когда консорциумом OMG было опубликовано описание языка UML 1.3. Следующей версией языка UML стала версия 1.5, специфицированная в марте 2003 г. В 2004 г. вышла версия UML 2.0.

На основе технологии UML компании Microsoft, Rational Software и другие поставщики средств разработки программных систем разработали единую информационную модель, которая получила название UML Information Model. Предполагается, что эта модель даст возможность различным программам, поддерживающим идеологию UML, обмениваться между собой компонентами и описаниями.

UML представляет собой общецелевой язык визуального моделирования, который разработан для спецификации, визуализации, проектирования и документирования компонентов программного обеспечения, бизнес-процессов и других систем. Он является простым и мощным средством моделирования, который может быть эффективно использован для построения концептуальных, логических и графических моделей сложных систем самого различного целевого назначения. Этот язык вобрал в себя наилучшие качества и опыт методов программной инженерии, которые с успехом использовались на протяжении последних лет при моделировании больших и сложных систем.

В рамках языка UML все представления о модели сложной системы фиксируются в виде специальных графических конструкций, получивших название диаграмм. В терминах языка UML определены следующие виды диаграмм:

    диаграмма вариантов использования (use case diagram)

    диаграмма классов (class diagram)

    диаграммы поведения (behaviorг diagrams)

    диаграммы взаимодействия (interaction diagrams)

    диаграмма кооперации (collaboration diagram)

    диаграмма последовательности (sequence diagram)

    диаграмма состояний (statechart diagram)

    диаграмма деятельности (activity diagram)

    диаграммы реализации (implementation diagrams)

    диаграмма компонентов (component diagram)

    диаграмма развертывания (deployment diagram)

Из перечисленных диаграмм некоторые служат для обозначения двух и более других подвидов диаграмм. При этом в качестве самостоятельных представлений в языке UML используются следующие диаграммы.

    Диаграмма вариантов использования – функциональное назначение системы

    Диаграмма классов – статическая структура модели системы в терминологии классов ООП

    Диаграмма кооперации – структурный аспект взаимодействия объектов системы через передачу и прием сообщений

    Диаграмма последовательности – временной аспект взаимодействия объектов системы

    Диаграмма состояний – описание поведения системы в терминах переходов и состояний

    Диаграмма деятельности – моделирование процесса выполнения операций (частный случай диаграммы состояний)

    Диаграмма компонентов – описание физического представления системы, определяющее ее архитектуру (первая из двух диаграмм реализации)

    Диаграмма развертывания – представление общей конфигурации и топологии распределенной системы (вторая из двух диаграмм реализации)

Перечень этих диаграмм и их названия являются каноническими в том смыс­ле, что представляют собой неотъемлемую часть графической нотации языка UML. Более того, процесс ООАП неразрывно связан с процессом построения этих диаграмм. При этом совокупность построенных таким образом диаграмм является самодостаточной в том смысле, что в них содержится вся информация, которая необходима для реализации проекта сложной системы.

Каждая из этих диаграмм детализирует и конкретизирует различные представления о модели сложной системы в терминах языка UML. При этом диаграмма вариантов использования представляет собой наиболее общую концептуальную модель сложной системы, которая является исходной для построения всех остальных диаграмм. Диаграмма классов является, по своей, сути, логической моделью, отражающей статические аспекты структурного построения сложной системы.

Диаграммы поведения также являются разновидностями логической модели, которые отражают динамические аспекты функционирования сложной системы. И, наконец, диаграммы реализации служат для представления физических компонентов сложной системы и поэтому относятся к ее физической модели.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Контрольная работа

" Объектно-ориентированное моделирование на основе UML "

Студент: Филатов Р.Д.

Липецк 2015

Введение

В данной контрольной работе разработана объектно-ориентированная модель информационной подсистемы для учета валютных операций с вкладами физических лиц. Данная модель разработана с помощью программного продукта Rational Rose 2000, с помощью языка UML.

Rational Rose 2000 имеет достаточно простой и интуитивно понятный интерфейс пользователя, позволяющий создавать модели сложных программных продуктов с помощью унифицированного языка программирования UML

Унифицированный язык моделирования UML (Unified Modeling Language) представляет собой язык для определения, представления, проектирования и документирования программных систем, информационных систем, организационно-экономических систем, технических систем и других систем различной природы.

Разработка языка UML преследовала несколько различных целей. Прежде всего, UML создавался как язык моделирования общего характера. UML не является частной собственностью, он основан на соглашении большинства специалистов в компьютерной области. В него были включены основные понятия из наиболее известных методологий, поэтому он может использоваться совместно с ними. UML разрабатывался для поддержки таких ценных наработок проектирования, как инкапсуляция, разделение сущностей и выявление сути конструкции модели. UML отвечает требованиям современной разработки программного обеспечения, в том числе таким, как крупномасштабность, параллелизм, распределенность, возможность использования образцов и удобство при командной работе.

Создание диаграммы прецедентов

Диаграмма прецедентов (использования) называется диаграмма, на которой показана совокупность прецедентов и актеров, а также отношения (зависимости, обобщения и ассоциации) между ними. Диаграммы прецедентов применяются для моделирования вида системы с точки зрения прецедентов (или вариантов использования). Чаще всего это предполагает моделирование контекста системы, подсистемы или класса либо моделирование требований, предъявляемых к поведению указанных элементов. Этот вид диаграммы позволяет создать список операций, которые выполняет система. Диаграмма этого вида представляет важную информацию - это одно из основных преимуществ ее применения. Взглянув на варианты использования, можно понять, какие функциональные возможности будут заложены в систему. Рассматривая действующих лиц можно выяснить, кто конкретно будет с ней взаимодействовать. Изучая все множество вариантов использования и действующих лиц, определятся сфера применения системы (что она будет делать). Это помогает узнать также, что она не будет делать, и внести коррективы. На диаграмме нашей объектно-ориентированной модели (рисунок А.1) показаны два действующих лица (актера): банковский работник и клиент, а также семь основных действий, выполняемых моделируемой системой: открыть вклад, закрыть вклад, совершить операцию по покупке валюты, отказ по покупке валюты, совершить операцию по продаже валюты, начислить проценты, касса.

Создание диаграммы последовательности

Взаимодействие объектов в системе происходит посредством приема и передачи сообщений объектами-клиентами и обработки этих сообщений объектами-серверами. При этом в разных ситуациях одни и те же объекты могут выступать и в качестве клиентов, и в качестве серверов. Данный тип диаграммы позволяет отразить последовательность передачи сообщений между объектами, акцентирует внимание на временной упорядоченности сообщений. Диаграммы последовательности отражают поток событий, происходящих в рамках варианта использования. Например, вариант использования "Открыть вклад" предусматривает несколько возможных последовательностей, таких как вести вариант вклада или вести неправильный вариант вклада. Ввод данных о открытие вклада представлен на данной диаграмме последовательностей. Под сценарием понимается конкретный экземпляр потока событий. Эта диаграмма последовательности отображает поток событий в рамках варианта использования "Открыть вклад" (рисунок А.2). Проанализировав составные части системы, наглядно видно, что наиболее главная задача работы банковского работника - это ввод данных о вкладах. Получив всю нужную информацию, составляем описание сценариев: Банковский работник создает новый вклад. Банковский работник вводит данные в базу данных. Банковский работник вводит данные в базу данных, но при ее сохранении в базе данных возникает ошибка. Действующее лицо на диаграмме - Банковский работник. Т.к. все взаимодействие в объектно-ориентированных системах осуществляется при помощи сообщений между объектами, то классы должны позволять отправку или прием сообщений. При обмене сообщениями одни классы являются клиентами и принимают сообщения, а другие - серверами и отправляют сообщения. информационный прецедент программный

Создание диаграммы сотрудничества

Диаграммы сотрудничества - второй тип диаграмм взаимодействия -Collaboration Diagram - Г. Буч называет диаграммой объектов. Эта диаграмма не акцентирует внимание на последовательности передачи сообщений, она отражает наличие взаимосвязей вообще, то есть на этой диаграмме отражается наличие сообщений от клиентов к серверам. Диаграмма показывает взаимодействие между объектами, а не классами, то есть является мгновенным снимком объектов системы в некотором состоянии. Ведь объекты, в отличие от созданных на этапе проектирования классов, создаются и уничтожаются на всем протяжении работы программы. И в каждый момент имеется конкретная группа объектов, с которыми осуществляется работа. В связи с этим появляются такие понятия, как время жизни и область видимости объектов, которые будут рассмотрены далее.

Создание диаграммы классов

Class diagram (диаграммы классов) позволяет создавать логическое представление системы, на основе которого создается исходный код описанных классов. На диаграммах классов отображаются некоторые классы и пакеты системы. Это статические картины фрагментов системы и связей между ними. Объединять классы можно как угодно, однако существует несколько наиболее распространенных подходов.

Во-первых, можно группировать классы по стереотипу. В таком случае получается один пакет с классами-сущностями, один с пограничными классами, один с управляющими классами и так далее. Этот подход может быть полезен с точки зрения размещения готовой системы, поскольку все находящиеся на клиентских машинах пограничные классы уже оказываются в одном пакете.

Второй подход заключается в объединении классов по их функциональности. Например, в пакете Security (Безопасность) будут содержаться все классы, отвечающие за безопасность приложения. Преимущество этого метода заключается в возможности повторного использования пакетов. Если внимательно подойти к группированию классов, можно получить практически не зависящие друг от друга пакеты. Например, пакет Security можно использовать и в других приложениях.

Наконец, применяют комбинацию двух указанных подходов. Для дальнейшей организации классов разрешается вкладывать пакеты друг в друга. На высоком уровне абстракции можно сгруппировать классы по функциональности, создав пакет Security. Внутри него можно создать другие пакеты, сгруппировав отвечающие за безопасность классы по функциональности или по стереотипу. Ознакомившись с классами модели, объединим эти классы в пакеты по стереотипу. Были созданы следующие пакеты: Entities (Сущности), Boundaries (Границы) и Control (Управление). В эти пакеты были помещены советующие им классы (рисунок А.4).

Классы-сущности (entity classes) отражают основные понятия (абстракции) предметной области и, как правило, содержат хранимую информацию. В данный пакет были добавлены класса Вклад и ВкладВалюты.

Управляющие классы (control classes) отвечают за координацию действий других классов. Обычно у каждого варианта использования имеется один управляющий класс, контролирующий последовательность событий этого варианта использования. Управляющий класс отвечает за координацию, но сам не несет в себе никакой функциональности - остальные классы не посылают ему большого количества сообщений. Вместо этого он сам посылает множество сообщений. Управляющий класс просто делегирует ответственность другим классам, по этой причине его часто называют классом-менеджером. В данном проекте данную функцию выполняет класс Control.

Граничные классы (boundary classes) - позволяют действующему лицу взаимодействовать с системой. Каждому взаимодействию между действующим лицом и вариантом использования должен соответствовать по крайней мере один граничный класс.

Граничные классы (boundary classes) - это классы, которые расположены на границе системы и окружающей среды. Они включают все формы, отчеты, интерфейсы с аппаратурой (такой, как принтеры или сканеры) и интерфейсы с другими системами.

В данной модели была создана диаграмма классов (рисунок А.4) для сценария "Открыть новый вклад".

Проектируя класс Вклад, видно, что за его поведением нужно наблюдать. Многие требования к классу значительно изменяются при изменении состояния его экземпляра. Чтобы убедиться, что проект удовлетворяет всем требованиям, создается диаграмма состояний для класса Вклад. С ее помощью в проекте была создана диаграмма состояния

Создание диаграммы состояний для классов и диаграммы компонентов

Диаграммы состояний (State) предназначена для отображения состояний объектов системы, имеющих сложную модель поведения. Состоянием (state) называется одно из возможных условий, в которых может существовать объект.

Находясь в конкретном состоянии, объект может выполнять определенные действия. Например, может генерировать отчет, осуществлять некоторые вычисления или посылать событие другому объекту. С состоянием можно связывать действия пяти типов: деятельность, входное действие, выходное действие, событие и история состояния.

Литература

1. Боггс У., Боггс М.. UML и Rational Rose: Пер. с англ. - М.: Издательство "Лори", 2009.- 581 с, ил.

2. Буч Г., Рамбо Д., Джекобсон А. Язык UML для пользователя: Пер. с англ. - М.: ДМК, 2009.- 432 е., ил. (Серия "для программистов").

3. Ларман К. применение UML и шаблонов проектирования: Пер. с англ. - М.: Издательский дом "Вильяме", 2012. - 496 с, ил.

4. Кураев Е.А. Банковские системы: Издательский дом "Глория", 2013.-225 с.,ил (Валютные операции с вкладами)

5. Родионова В.М. Банковские операции: Под ред. Родионовой В.М.,2011 .- 112с, ил (Валютные операции с вкладами)

Размещено на Allbest.ru

...

Подобные документы

    Использование программы Rational Rose 2000 для моделирования информационной подсистемы учета валютных операций с вкладами физических лиц. Создание диаграмм прецедентов, последовательности и сотрудничества. Основные добавленные атрибуты класса "Вклад".

    курсовая работа , добавлен 23.06.2011

    Этапы разработки объектно-ориентированной модели информационной подсистемы приемной комиссии для учета абитуриентов. Создание диаграмм для моделирования процесса обмена сообщениями между объектами. Порядок генерации программного кода на языке С++.

    курсовая работа , добавлен 29.06.2011

    Методика разработки объектно-ориентированной модели информационной подсистемы необходимой для учета успеваемости студентов факультета, которая спроектирована с помощью программного продукта Rational Rose 2003 и унифицированного языка моделирования UML.

    курсовая работа , добавлен 25.06.2011

    Разработка объектно-ориентированной подсистемы складского учета для фирмы "КавказЮгАвто". Краткая характеристика предметной области. Построение диаграмм размещения, прецедентов, последовательности, компонентов и классов. Генерация программного кода C++.

    курсовая работа , добавлен 26.06.2011

    Унифицированный язык моделирования. Методы объектно-ориентированного анализа и проектирования. Создание диаграммы последовательности и диаграммы сотрудничества. Главная диаграмма классов. Добавление связей между классами. Зависимость между пакетами.

    курсовая работа , добавлен 23.06.2011

    Общая характеристика склада как объекта хозяйственной деятельности. Создание диаграммы прецедентов и последовательности. Построение корпоративной диаграммы сотрудничества. Предназначение диаграммы классов и компонентов. Генерация программного кода C++.

    курсовая работа , добавлен 23.06.2011

    Разработка модели информационной подсистемы для учета заказов клиентов автосервиса с применением языка UML. Создание диаграммы прецедентов, последовательности, сотрудничества и классов, используя методы Rational Rose 2000. Генерация программного кода C++.

    курсовая работа , добавлен 22.06.2011

    Особенности объектно-ориентированного проектирования. Основные понятия объектно-ориентированного подхода. Основы языка UML, варианты его использования. Диаграммы классов и взаимодействия. Разработка диаграммы прецедентов (вариантов использования).

    курсовая работа , добавлен 13.05.2014

    Разработка объектно-ориентированной модели информационной подсистемы учета студентов университета во время экзаменационной сессии с помощью программы Rational Rose 2000, с использованием языка UML. Порядок генерации программного кода на языке С++.

    курсовая работа , добавлен 21.06.2011

    Построение диаграмм, добавление деталей к описаниям операций, определение атрибутов классов и порядок генерации программного кода на языке С++ объектно-ориентированной модели информационной подсистемы, автоматизирующей работу регистратуры поликлиники.

Наиболее очевидная формализация системного подхода к исследованию сложных систем осуществляется на основе понятия “объект ” как базового элемента системы. Объектным подходом будем называть системный подход, формализованный на основе понятия объект. Технологии, построенные на базе объектного подхода, будем называть объектно-ориентированными технологиями (ООТ).

Объектно-ориентированное моделирование (ООМ) обеспечивает ряд существенных преимуществ:

1. Использование объектного подхода существенно повышает уровень унификации разработки и пригодность для повторного использования уже созданных и подтвердивших свою работоспособность моделей.

2. Использование ООМ приводит к построению систем на основе стабильных промежуточных описаний, что упрощает процесс внесения изменений. Это дает возможность системе развиваться постепенно и не приводит к полной ее переработке даже в случае существенных изменений исходных требований.

3. Объектно-ориентированные модели часто получаются более компактными. Это означает не только уменьшение объема кода программ, но и удешевление проекта за счет использования предыдущих разработок, что дает выигрыш в стоимости и во времени.

4. Объектная модель снижает риск разработки сложных систем за счет четко определенных этапов проектирования и интеграции процесса создания модели, который растягивается на все время разработки, а не превращается в единовременное событие.

5. Объектная модель позволяет в полной мере использовать выразительные возможности современных объектно-ориентированных языков программирования.

Сравнение определений объекта в литературе позволило выявить важные моменты ООМ:

Объектный анализ выявляет для объектов поведение и структуру;

Неоднозначность в представлении разрешается путем закрепления за понятиями термина «класс» , а за конкретными физическими объектами термина «объект» .

Таким образом, ООМ предполагает поддержку классов и экземпляров (статических и динамических) объектов, инкапсуляцию, наследование и полиморфизм. Понятия класс и экземпляр поддерживаются явно или неявно практически всеми языками имитационного моделирования. В противном случае достаточно сложно моделировать системы с множеством однотипных блоков и невозможно моделировать системы с динамической структурой.

Более сложными понятиями ООМ являются наследование и полиморфизм. Наследование позволяет перенести в описание нового класса элементы описания уже имеющегося класса с добавлением новых. Полиморфизм означает возможность использования вместо экземпляра блока некоторого базового класса экземпляра любого его производного класса.

Еще один принцип ООМ является принцип модульности , подразумевающий разбиение системы на части, называемые модулями, каждый из которых содержит группы классов. Наличие широких библиотек классов является серьезным преимуществом той или иной системы имитационного моделирования. В этом случае модель может строиться механически из экземпляров стандартных классов с их параметрической настройкой. На основе разработанных библиотек классов создаётся банк блоков для конструирования имитационных моделей различных предметных областей.


Объектная форма представления наилучшим образом отвечает задачам имитационного моделирования, так как позволяет поставить в однозначное соответствие каждому предмету, явлению или процессу реального мира и их отношениям соответствующий информационный аналог.

В настоящее время признанным стандартом моделирования сложных систем является унифицированный язык моделирования UML (Unified Modeling Language ). Язык UML был разработан компанией Rational Software и ее партнерами. Он является преемником языков моделирования, основанных на методах объектного анализа и проектирования Буча, OOSE Якобсона, OMT Рэмбо и др.

Визуальные модели обеспечивают ясность представления выбранных архитектурных решений и позволяют понять исследуемую или разрабатываемую систему во всей ее полноте. Сложность систем и проектов продолжает увеличиваться, и поэтому возрастает актуальность создания моделирующих комплексов, использующих технологию визуального моделирования.

Одним из немногих инструментальных средств ИМ, использующих в качестве основы структурные диаграммы UML, является AnyLogic , которое применяется в основном для исследования динамических непрерывных систем, за счет использования «гибридных» карт состояний и активных объектов UML-RT, созданных специально для представления динамических систем реального времени. Система Model Vision Studium является упрощенным (лабораторным) вариантом системы AnyLogic .